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ABSTRACT 

The rapid progress in autonomous driving technology has highlighted the need for accurate and reliable systems to 
detect objects, especially in 3D environments. This study aims to improve 3D object detection by combining data from 
LiDAR and cameras. LiDAR sensors are known for their ability to measure distances precisely, while cameras provide 
detailed visual information. By merging these two data sources, the goal is to create a system that can detect objects 

more accurately and reliably, even in complex and dynamic driving conditions. The research involves three main 
objectives: developing a method for combining sensor data, using advanced deep learning techniques to analyse this 
combined data, and validating the system through experiments. To achieve this, the project uses a pre-trained YOLOv5 
model to identify objects in 2D camera images. The identified objects are then mapped into 3D space using LiDAR 
data, which is carefully aligned and calibrated with the camera images. The fusion process links the depth information 
from the LiDAR point cloud with the visual data from the camera, enabling precise 3D positioning of objects. The 
results show that combining LiDAR and camera data significantly enhances the accuracy of 3D object detection. Tests 

comparing estimated object distances with actual measurements reveal only minor differences, confirming the 
system's effectiveness and reliability. This work demonstrates the importance of integrating multiple sensors to 
improve the performance of perception systems in autonomous vehicles. This study contributes to the field of 
autonomous driving by presenting a validated system for LiDAR-Camera fusion. The findings emphasise how sensor 
fusion can enhance the robustness and precision of object detection systems. Future research could explore how to 

optimise the system for challenging weather conditions, incorporate additional sensors like RADAR, and leverage 
more advanced deep learning models to further advance autonomous driving technology. 
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Introduction 

Autonomous driving technology is poised to revolutionise transportation, making travel safer, more efficient, and 
more convenient. A crucial aspect of autonomous vehicles is their ability to accurately perceive and interpret their 
surroundings to navigate safely with little or no human intervention. This thesis focuses on developing a system for 
3D object detection by combining data from LiDAR (Light Detection and Ranging) and cameras. By integrating these 
two sensing technologies, the aim is to enhance the reliability and precision of object detection, even in complex and 

dynamic driving environments. This chapter outlines the problem addressed in the thesis, offering readers a clear 
understanding of its purpose. In recent years, deep learning-based 2D object detection has garnered significant 
attention. Many researchers have extended these approaches to 3D object detection using LiDAR point clouds. 
However, LiDAR-generated point clouds are sparse and irregular, which creates challenges for accurate detection. To 
overcome this, some studies transform point clouds into 2D representations, such as front-view images, bird's-eye 
view (BEV) images, or structured voxel grids. These transformations allow 2D convolutional neural networks to 
extract features, but they often result in some loss of 3D information, particularly in distant regions. Point-based 
methods that directly process LiDAR point clouds offer another approach, often using multilayer perceptron’s to 
extract features. While these methods can provide more detailed information, they are computationally intensive. 
BEV-based methods are faster but still lose some information during the conversion process. This thesis mitigates 

information loss by incorporating RGB-D images, which combine 2D RGB image data with depth information. RGB 
images are rich in texture and high-resolution details, making them well-suited for detecting small objects. However, 
when using only monocular or even stereo images, accurately estimating depth remains challenging. To address these 
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limitations, some studies have explored combining 2D image data with LiDAR point clouds. Traditional fusion 
techniques, such as simple concatenation or elementwise averaging of features, often result in suboptimal 3D detection 

accuracy. This thesis adopts an advanced Region of Interest (ROI) attention fusion mechanism, which enables more 
effective integration of features from different sensor modalities. Previous research has also explored two-stage and 
one-stage frameworks for 3D object detection. Two-stage methods, like MV3D and AVOD, generate initial 3D 
proposals in the first stage and refine them in the second, achieving high accuracy but at the cost of greater 
computational time. One-stage methods are faster but often sacrifice accuracy because they lack a refinement stage. 
This study improves the performance of one-stage models by incorporating a global feature attention (GFA) 
mechanism, which enhances the representation of global features, thereby boosting detection accuracy. By addressing 
these challenges, this thesis aims to contribute to the development of more robust and accurate 3D object detection 
systems, advancing the capabilities of autonomous vehicles in real-world scenarios. 

Method 

This chapter describes the research methodology used in this thesis, explaining the reasoning behind the chosen 
approach and how it aligns with the research objectives. It outlines why the selected methodology is well-suited to 
address the research question and discusses the rationale for choosing it over other alternatives, ensuring that the 
decision is grounded in scientific principles and tailored to the specific requirements of the problem. Additionally, the 
chapter examines how the chosen methodology impacts the validity and reliability of the research findings. The 
research adopts an implementation-based methodology, which involves designing, developing, and testing new 
solutions, such as algorithms or techniques, to evaluate their performance against existing methods. As outlined by 

Berndtsson et al. (2007), this approach focuses on demonstrating the practical advantages of a proposed solution 
through implementation and comparison. The aim is to showcase measurable improvements and validate the solution's 
effectiveness in real-world applications. In this study, the proposed solution entails developing a system that combines 
data from LiDAR and cameras to detect objects and estimate their distances. This system is evaluated using real-world 
data to ensure accuracy, reliability, and performance. The evaluation includes comparisons with existing methods, as 

discussed in Section 2.3.1, to establish the system's advantages and high confidence in its results. The overall workflow 
of the RCBEVDet system is illustrated in Figure 2. The process begins with multi-view images, which are passed 

through an image encoder to extract features. A view transformation module then converts these image features into 
bird's-eye view (BEV) features. Simultaneously, radar point cloud data, aligned with the image data, is processed by 
the RadarBEVNet to generate radar BEV features. These two sets of features—image BEV and radar BEV—are then 
combined using a Cross-Attention Multi-Layer Fusion module. The final fused BEV features are utilised for the 3D 
object detection task, ensuring accurate and robust results. This methodology ensures that the system is rigorously 

tested and validated, highlighting its potential to advance object detection in autonomous driving applications. 
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Future Scope 

The future potential of LiDAR-Camera fusion for 3D object detection is immense, especially as advancements in 
autonomous systems, robotics, and smart transportation continue to demand highly accurate and dependable 
perception technologies. Combining data from LiDAR and cameras leverages their respective strengths—cameras 

provide high-resolution imagery and colour details, while LiDAR delivers precise depth measurements. Together, they 
enable more reliable and context-aware object detection. Future research can focus on optimising fusion techniques 

using advanced deep learning frameworks to improve accuracy and efficiency. Efforts can also aim at enhancing real-
time processing to enable deployment on edge devices and making the system more resilient in challenging conditions, 

such as fog, rain, or low light. Beyond autonomous vehicles, this technology has applications in emerging areas like 
mixed reality and digital twins, offering improved spatial understanding for urban planning, construction, and the 
entertainment industry. Another promising avenue is reducing the cost and energy consumption of hardware without 
compromising performance, making these systems more accessible for broader adoption in consumer and industrial 
settings. Integration with advanced driver assistance systems (ADAS) and smart city infrastructure can significantly 
enhance road safety, traffic management, and autonomous mobility, further driving the adoption of this technology in 
shaping the future of intelligent transportation. 

2. Related Work 

2.1. Camera-based 3D Object Detection 

Detecting objects in 3D space using only camera images presents significant challenges due to the limited depth 
information compared to LiDAR or radar systems. However, researchers have made substantial progress in 

overcoming this limitation through various approaches. These include estimating depth from images, leveraging 
geometric constraints and shape priors, designing specialised loss functions, and optimising detection and 
reconstruction jointly. The availability of multi-view camera datasets has further advanced 3D object detection by 

enabling the development of Multiview-based methods. These methods fall into two main categories: geometry-based 
and transformer-based approaches. Geometry-based methods, such as the Lift-Splat-Shoot (LSS) model, transform 
image features from multiple viewpoints into 3D voxel or bird's-eye view (BEV) representations. LSS uses a depth 
estimation network to compute depth distributions and a context vector for each image, combining them to generate 
3D features along the camera's perspective rays. BEVDet improves upon LSS by directly detecting 3D objects within 
the BEV feature space, while BEVDepth enhances depth estimation accuracy with explicit depth supervision. Building 
on these, BEVDet4D aligns BEV features from past image frames to improve velocity predictions and overall 
detection performance. The RCBEVDet system, highlighted in this study, builds on these advancements. The pipeline 
begins by encoding features from multi-view images and transforming them into BEV representations, generating the 
image BEV features. Simultaneously, radar point clouds are processed through RadarBEVNet to extract radar BEV 
features. These BEV features from cameras and radar are dynamically aligned and combined using a cross-attention 
multi-layer fusion (CAMF) module. The resulting semantically rich, fused BEV features are then utilised for accurate 

3D object detection tasks, offering improved precision and reliability. 

2.2. Radar-camera 3D Object Detection 

Millimetre-wave radar is a commonly used sensor in autonomous vehicles for 3D object detection due to its cost-
effectiveness, long-range capabilities, and the ability to provide Doppler velocity measurements that are not impacted 
by adverse weather conditions. However, the sparse nature of radar data and its lack of semantic information make 

radar-only 3D object detection challenging. As a result, radar is typically used in combination with other sensors, such 
as cameras, in multi-modal 3D object detection systems. Recently, the combination of millimetre-wave radar with 
multi-view cameras has garnered significant attention, as these sensors complement each other well—radar offers 
depth and velocity information, while cameras provide rich visual data. Various methods have been developed to 
combine radar and camera data to enhance 3D object detection. For example, Radar Net employs a multi-level fusion 
approach that improves the detection of distant objects and reduces velocity measurement errors. CenterFusion 
generates initial 3D detections from camera images and refines them by associating radar features. CRAFT introduces 
a proposal-level fusion approach that uses a Soft-Polar Association and Spatio-Contextual Fusion Transformer to 
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efficiently exchange information between radar and cameras. RADIANT estimates the offset between radar echoes 
and object centres, using radar depth information to enhance camera features. CRN creates radar-augmented images 

with depth information from radar, which are then processed through multi-view transformation using a cross-attention 
mechanism to address misalignment and information gaps between radar and camera data. RCFusion employs a radar 
pillar net to generate radar pseudo-images and combines radar and camera bird’s-eye-view features with a weighted 
fusion module. In contrast to these approaches, RCBEVDet introduces a specialised RadarBEVNet for efficient radar 
BEV feature extraction and a Cross-Attention Multi-Layer Fusion module, which ensures robust alignment and fusion 
of features from both radar and camera data, resulting in improved integration and more accurate and reliable 3D 
object detection in autonomous vehicles. 

Implementation 

This chapter describes the approach used in this thesis to tackle the key challenges in 3D object detection for 

autonomous vehicles by combining LiDAR and camera data. It explains the step-by-step process involved in gathering 
data, developing the detection model, merging sensor data, and associating depth information to ensure accurate 3D 
object detection. 

FuDNN for 3D Object Detection 

A deep learning model called FuDNN, based on point CNN, is designed for 3D object detection. Its architecture 
includes several components: a 2D backbone, a 3D backbone, an attention-based fusion sub-network, a region 
proposal network (RPN), and a 3D box refinement network. The 2D backbone extracts 2D features from camera 

images, while the attention-based fusion sub-network combines these 2D features with 3D features from LiDAR data, 
extracted by Point Net++. The RPN generates 3D object proposals, and the 3D box refinement network fine-tunes the 

3D object locations. The inputs to FuDNN are point clouds and RGB images. The images are processed as a matrix 
of dimensions B × 3 × H × W, where B is the batch size, H is the height, and W is the width of the image. The point 
clouds are represented as a matrix of B× 3× N, where N is the number of LiDAR points. The 2D backbone starts with 
a convolutional layer (Conv1) with 128 kernels of size 7 × 7, a stride of 1, which outputs a matrix of size B × 128 × 
H × W. Following this, batch normalisation (BN1) is applied to speed up network training and convergence, as 

demonstrated by Ioffe and Szegedy. A ReLU activation (ReLU1) is used to avoid the vanishing gradient problem, and 
then a max-pooling layer (S1) with a 2 × 2 kernel reduces the size of the feature map to B × 128 × H/2 × W/2. This 
structure is repeated twice: a second convolutional layer (Conv2) with 256 kernels of size 5 × 5 is followed by batch 
normalisation (BN2) and ReLU activation (ReLU2). The third convolutional layer (Conv3) has 128 kernels of size 3 
× 3, followed by ReLU3. The output of the 2D backbone is the image feature matrix, denoted as FI, with the shape B 
× 128 × H/2 × W/2. 

 

 

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 6

PAGE NO: 4



COMPARISON WITH TABLE 

 

 

 

 

Method Pub. 

Year 

Stage(s) Number of 

Parameter 

Runtime 

(Ms) 

3D (%) BEV (%) 

E              M            H    mAP E             M           H mAP 

MV3D [4] 

F-Point Net [26] 

PC-CNN [27] 

AVOD [14] 

AVOD-FPN [14] 

MVX-Net [28] 

 

2017 

2017 

2018 

2018 

2018 

2019 

 

 

 

Two 

- 

- 

- 

38,073,528 

- 

- 

360 

170 

500 

80 

100 

150 

71.29       62.678     56.56 

83.76       70.92       63.65 

57.63       51.74       51.39 

83.11       74.02       67.84 

84.41       74.44       68.65 

85.50       73.30       67.40  

63.51 

72.78 

53.59 

74.99 

75.83 

75.40 

86.55      78.10     76.67 

88.16      84.02     76.44 

83.61      77.36     69.61 

   -              -            -  

89.37      86.09     79.13 

89.50      86.90     79.00 

 

MCF3D [21] 2019 Three - 160 84.11         75.19         77.23 77.84 88.82       86.11       79.31  

AVOD-SSD [15] 

Cont-Fuse [29] 

Complex-Retina [16] 

Proposed 

2018 

2019 

2019 

 

One 

13,399,918 

- 

- 

20,575,616 

90 

60 

90 

110 

82.36       72.92        74.12 

86.32       73.25        75.79 

78.62       72.77        72.87 

85.12       76.23        78.60 

74.12 

75.79 

72.87 

78.60 

89.00       85.08       78.31 

95.44        87.34     82.43 

89.01       84.69      78.71 

89.64       86.23      85.60 
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Result 

This chapter presents the results of the experiments and analyses the data collected during the study. It highlights key 
findings and visualisations to provide a clear understanding of the impact and significance of the research. As outlined 
in Chapter 4, LiDAR points were successfully projected onto the image plane using transformation matrices. This 
allowed the association of 2D image pixels with their corresponding 3D LiDAR depth values. The YOLOv5 model 
was then used to detect objects in the 2D images, and the depths of these objects were determined based on the 
projected LiDAR data. The integration of the two provided a clear understanding of the spatial relationships between 

detected objects and their depths. In LiDAR point cloud data, the ground plane refers to the flat surface detected by 
the LiDAR sensor, typically representing roads or other horizontal surfaces. By removing the ground plane from the 
data, the focus is shifted to relevant objects, such as vehicles, pedestrians, and obstacles. This step reduces 
computational load, minimises false positives, and enhances sensor fusion. With the ground plane removed, LiDAR 
points can be more accurately projected onto the image plane, allowing for precise depth association with image pixels. 

The YOLOv5 model successfully detects objects in the 2D image, and the depth information is determined using the 
LiDAR data. The integration of GPS and IMU data further enables the localisation of detected objects in global 

coordinates, providing a clear understanding of their positions in the real world. This comprehensive approach allows 
for accurate depth estimation and global localisation of detected objects, which is essential for tasks like autonomous 
navigation, advanced driver assistance systems, and 3D reconstruction. The ability to transform coordinates between 

different reference frames enhances situational awareness and improves operational efficiency. After detecting objects 
in the 2D image and estimating their depth from the LiDAR data, the results need to be validated for accuracy. As 

shown in Figure 4.3, the distance between the IMU and the Velodyne LiDAR is 0.81 meters, and the distance between 
the Velodyne and the Camera is 0.27 meters. The estimated depth from the camera space must account for these 
distances, and the total depth should be verified against the actual depth measured by the IMU to ensure accuracy. 
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CONCLUSION 

This article introduces a one-stage 3D object detection framework that combines LiDAR and camera data, enhanced 
by three attention mechanisms to improve detection accuracy. First, the HA mechanism is applied to the input RGB 
images to generate RGBD images, which include depth information. Next, the GFA mechanism is used during feature 

extraction for both the RGB images and the Bird's Eye View (BEV) branches. This helps capture important features 
from both the image channels and spatial dimensions. Finally, the RA mechanism is used to fuse the paired view-

specific regions of interest (ROIs) for better object detection. The proposed method significantly improves 3D object 
detection performance and surpasses other existing LiDAR and camera-based methods in accuracy. Looking ahead, 

the process of generating BEV images could potentially be replaced with a learnable feature generator, such as Second. 
Additionally, the method for anchor generation could shift from anchor-based to anchor-free, further improving 
performance. By leveraging both RGB images and LiDAR point clouds, 3D object detection using this combined 
approach could achieve even better results than methods relying solely on LiDAR. 
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