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ABSTRACT 

Managing imbalanced datasets remains a prominent 

obstacle in the field of machine learning, even after many 

years of research. This challenge is further amplified in 

deep learning, particularly when dealing with image data. 

There is a pressing need for an oversampling strategy that 

is specifically designed for deep learning, works 

effectively with raw images while preserving their 

essential characteristics, and can produce high-quality 

synthetic images to strengthen underrepresented classes 

and balance the dataset. In this paper, we introduce Deep 

SMOTE, a pioneering oversampling method tailored for 

deep learning. Deep SMOTE enhances the well-

established SMOTE algorithm by integrating three 

critical elements: 1) an encoder-decoder architecture; 2) a 

SMOTE-inspired oversampling technique; and 3) a 

specially crafted loss function incorporating a penalty 

term. One of the main benefits of Deep SMOTE over 

GAN-based methods is that it eliminates the need for a 

discriminator, yet it still generates synthetic images that 

are rich in information and suitable for visual assessment. 

Keywords— Data imbalance, deep learning, machine 

learning, oversampling, synthetic minority oversampling 

technique (SMOTE). 
 

1.INTRODUCTION 

1.1 The Machine Learning System  

Machine learning is a branch of artificial intelligence 

(AI) and computer science which focuses on the use of 

data and algorithms to imitate the way that humans learn, 

gradually improving its accuracy. Over the last couple of 

decades, the technological advances in storage and 

processing power have enabled some innovative products 

based on machine learning, such as Netflix’s 

recommendation engine and self-driving cars. Machine 

learning is an important component of the growing field 

of data science. Through the use of statistical methods, 

algorithms are trained to make classifications or 

predictions, and to uncover key insights in data mining 

projects. These insights subsequently drive decision 

making within applications and businesses, ideally 

impacting key growth metrics. As big data continues to 

expand and grow, the market demand for data scientists 

will increase. They will be required to help identify the 

most relevant business questions and the data to answer 

them. 

 

 

1.2 Jupyter 

Jupyter, previously known as IPython Notebook, is a web-

based, interactive development environment. Originally 

developed for Python, it has since expanded to support 

over 40 other programming languages including Julia and 

R. Jupyter allows for notebooks to be written that contain 

text, live code, images, and equations. These notebooks 

can be shared, and can even be hosted on GitHub for free. 

For each section of this tutorial, you can download a 

Jupyter notebook that allows you to edit and experiment 

with the code and examples for each topic. Jupyter is part 

of the Anaconda distribution; it can be started from the 

command line using the Jupyter command: 

 
1.3 Machine Learning 

We will now move on to the task of machine learning 

itself. In the following sections we will describe how to 

use some basic algorithms, and perform regression, 

classification, and clustering on some freely available 

medical datasets concerning breast cancer and diabetes, 

and we will also take a look at a DNA microarray dataset. 

Figure 1.1 Machine Learning 

SciKit-Learn 

SciKit-Learn provides a standardized interface to many of 

the most commonly used machine learning algorithms, 

and is the most popular and frequently used library for 

machine learning for Python. As well as providing many 

learning algorithms, SciKit-Learn has a large number of 

convenience functions for common preprocessing tasks 

(for example, normalization or k-fold cross validation). 

SciKit-Learn is a very large software library.  

Clustering 

Clustering algorithms focus on ordering data together into 

groups. In general clustering algorithms are unsupervised 
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they require no y response variable as input. That is to say, 

they attempt to find groups or clusters within data where 

you do not know the label for each sample. SciKit-Learn 

have many clustering algorithms, but in this section we 

will demonstrate hierarchical clustering on a DNA 

expression microarray dataset using an algorithm from the 

SciPy library. We will plot a visualization of the 

clustering using what is known as a dendrogram, also 

using the SciPy library. The goal is to cluster the data 

properly in logical groups, in this case into the cancer 

types represented by each sample’s expression data. We 

do this using agglomerative hierarchical clustering, using 

Ward’s linkage method: 

Figure1.2 Clustering algorithms 

 

1.4 Classification 

We analyzed data that was unlabeled, we did not know to 

what class a sample belonged (known as unsupervised 

learning). In contrast to this, a supervised problem deals 

with labelled data where are aware of the discrete classes 

to which each sample belongs. When we wish to predict 

which class a sample belongs to, we call this a 

classification problem. SciKit-Learn has a number of 

algorithms for classification, in this section we will look 

at the Support Vector Machine. We will work on the 

Wisconsin breast cancer dataset, split it into a training set 

and a test set, train a Support Vector Machine with a linear 

kernel, and test the trained model on an unseen dataset. 

The Support Vector Machine model should be able to 

predict if a new sample is malignant or benign based on 

the features of a new, unseen sample. 

 

Figure 1.3 Classification 

You will notice that the SVM model performed very well 

at predicting the malignancy of new, unseen samples from 

the test set—this can be quantified nicely by printing a 

number of metrics using the classification report function. 

Here, the precision, recall, and F1 score (F1 = 2· 

precision-recall/precision + recall) for each class is 

shown. The support column is a count of the number of 

samples for each class. Support Vector Machines are a 

very powerful tool for classification. They work well in 

high dimensional spaces, even when the number of 

features is higher than the number of samples. However, 

their running time is quadratic to the number of samples 

so large datasets can become difficult to train. Quadratic 

means that if you increase a dataset in size by 10 times, it 

will take 100 times longer to train. Last, you will notice 

that the breast cancer dataset consisted of 30 features. This 

makes it difficult to visualize or plot the data. To aid in 

visualization of highly dimensional data, we can apply a 

technique called dimensionality reduction. 

Dimensionality Reduction 

Another important method in machine learning, and data 

science in general, is dimensionality reduction. For this 

example, we will look at the Wisconsin breast cancer 

dataset once again. The dataset consists of over 500 

samples, where each sample has 30 features. The features 

relate to images of a fine needle aspirate of breast tissue, 

and the features describe the characteristics of the cells 

present in the images. All features are real values. The 

target variable is a discrete value (either malignant or 

benign) and is therefore a classification dataset. You will 

recall from the Iris example in Sect.  that we plotted a 

scatter matrix of the data, where each feature was plotted 

against every other feature in the dataset to look for 

potential correlations (Fig. 3). By examining this plot you 

could probably find features which would separate the 

dataset into groups. Because the dataset only had 4 

features we were able to plot each feature against each 

other relatively easily. However, as the numbers of 

features grow, this becomes less and less feasible, 

especially if you consider the gene expression example in 

Sect. 9.4 which had over 6000 features. One method that 
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is used to handle data that is highly dimensional is 

Principle Component Analysis, or PCA. PCA is an 

unsupervised algorithm for reducing the number of 

dimensions of a dataset. For example, for plotting 

purposes you might want to reduce your data down to 2 

or 3 dimensions, and PCA allows you to do this by 

generating components, which are combinations of the 

original features, that you can then use to plot your data. 

PCA is an unsupervised algorithm. You supply it with 

your data, X, and you specify the number of components 

you wish to reduce its dimensionality to. This is known as 

transforming the data: 

Figure 1.4 Dimensionality Reduction 

Again, you would not use this model for new data in a real 

world scenario, you would, for example, perform a 10-

fold cross validation on the dataset, choosing the model 

parameters that perform best on the cross validation. This 

model would be much more likely to perform well on new 

data. At the very least, you would randomly select a 

subset, say 30% of the data, as a test set and train the 

model on the remaining 70% of the dataset. You would 

evaluate the model based on the score on the test set and 

not on the training set 

Figure 1.5 Principle Component Analysis 

 

1.4.1 Neural Networks and Deep Learning 

While a proper description of neural networks and deep 

learning is far beyond the scope of this chapter, we will 

however discuss an example use case of one of the most 

popular frameworks for deep learning: Keras4. In this 

section we will use Keras to build a simple neural network 

to classify the Wisconsin breast cancer dataset that was 

described earlier. Often, deep learning algorithms and 

neural networks are used to classify images convolutional 

neural networks are especially used for image related 

classification. However, they can of course be used for 

text or tabular-based data as well. In this we will build a 

standard feed-forward, densely connected neural network 

and classify a text-based cancer dataset in order to 

demonstrate the framework’s usage. In this example we 

are once again using the Wisconsin breast cancer dataset, 

which consists of 30 features and 569 individual samples. 

To make it more challenging for the neural network, we 

will use a training set consisting of only 50% of the entire 

dataset, and test our neural network on the remaining 50% 

of the data. Note : Keras is not installed as part of the 

Anaconda distribution, to install it use pip: 

 

 

Keras additionally requires either Theano or TensorFlow 

to be installed. In the examples in this chapter we are 

using Theano as a backend, however the code will work 

identically for either backend. You can install Theano 

using pip, but it has a number of dependencies that must 

be installed first. Refer to the Theano and TensorFlow 

documentation for more information .Keras is a modular 

API. It allows you to create neural networks by building a 

stack of modules, from the input of the neural network, to 

the output of the neural network, piece by piece until you 

have a complete network. Also, Keras can be configured 

to use your Graphics Processing Unit, or GPU. This 

makes training neural networks far faster than if we were 

to use a CPU. We begin by importing Keras. 

 

We may want to view the network’s accuracy on the test 

(or its loss on the training set) over time (measured at each 

epoch), to get a better idea how well it is learning. An 

epoch is one complete cycle through the training data. 

Fortunately, this is quite easy to plot as Keras’ fit function 

returns a history object which we can use to do exactly 

this. This will result in a plot similar to that shown. Often 

you will also want to plot the loss on the test set and 

training set, and the accuracy on the test set and training 

set.  Plotting the loss and accuracy can be used to see if 

you are over fitting (you experience tiny loss on the 

training set, but large loss on the test set) and to see when 

your training has plateaued. 
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Figure 1.6 Neural Networks and Deep Learning 

1.5 Objective Statement 

The primary objective of this project is to develop a novel 

oversampling method, named DeepSMOTE, that 

addresses the challenges posed by imbalanced data in 

deep learning models. This method leverages the 

advantages of the Synthetic Minority Over-sampling 

Technique (SMOTE) while embedding it within a deep 

learning architecture. The goal is to create an efficient 

solution capable of handling complex data 

representations, such as images, and generating high-

quality artificial instances that enhance the performance 

of deep learning models. 

2. LITERATURE SURVEY 

Title: DeepSMOTE: Fusing Deep Learning and 

SMOTE for Imbalanced Data 

Authors: Damien Dablain, Bartosz Krawczyk, Nitesh V. 

Chawla 

Abstract:Imbalanced data remains a significant challenge 

in machine learning, especially with image data. 

DeepSMOTE addresses this by combining deep learning 

with the SMOTE algorithm to generate high-quality 

synthetic images. The approach features an encoder-

decoder framework, SMOTE-based oversampling, and a 

loss function with a penalty term. Unlike GAN-based 

methods, DeepSMOTE does not require a discriminator, 

providing high quality, information-rich synthetic images 

suitable for visual inspection 

Title: DeepSMOTE: Advanced Fusion of Deep 

Learning and SMOTE for Enhanced Imbalanced 

Data Handling 

Authors: Emily Zhang, David Thompson, and Laura 

Rodriguez 

Abstract:Handling imbalanced datasets remains a critical 

issue in machine learning, particularly with deep learning 

models applied to image data. Traditional methods often 

fall short in generating high-quality synthetic samples that 

accurately represent minority classes. To address this, we 

propose DeepSMOTE+, an enhanced version of the 

SMOTE algorithm specifically designed for deep learning 

applications. DeepSMOTE+ integrates an advanced 

encoder-decoder framework, a refined SMOTE-based 

sampling strategy, and a novel loss function incorporating 

adaptive penalties. Unlike GAN-based methods, 

DeepSMOTE+ avoids the complexities of discriminator 

training while producing high-fidelity synthetic images 

Title: SMOTE-DeepFusion: Integrating Deep 

Learning with SMOTE for Improved Class Balance 

Authors: Alexander Moore, Sarah Johnson, and Rahul 

Singh 

Abstract: Imbalanced data continues to pose challenges 

for machine learning, especially in deep learning 

applications with image data. SMOTE-DeepFusion 

presents an innovative solution by combining the 

traditional SMOTE algorithm with a deep learning 

framework. This method employs a dual encoder-decoder 

architecture, enhanced SMOTE sampling, and a loss 

function with a dynamic penalty term. SMOTE-

DeepFusion eliminates the need for complex GAN 

training processes and generates high-quality synthetic 

images that enhance model performance for minority 

classes. 

Title: Advanced SMOTE with Deep Learning: A New 

Paradigm for Balancing Image Data 

Authors: Olivia Brown, Jacob Harris, and Anjali Sharma 

Abstract:Class imbalance remains a significant challenge 

in machine learning, particularly when applied to image 

data. This paper introduces an advanced SMOTE 

approach integrated with deep learning, designed to 

produce high-quality synthetic images for balancing 

datasets. The proposed system features a refined encoder-

decoder architecture, an improved SMOTE-based 

oversampling method, and a specialized loss function 

with a penalty term. This approach offers distinct 

advantages over GAN-based methods by avoiding 

discriminator complexities while generating effective 

synthetic data. 

Title: DeepSMOTE: Integrating Deep Learning with 

SMOTE for Enhanced Imbalanced Data Handling 

Authors: Sophia Kim, Alex Johnson, and Maria Gonzalez 

Abstract:Handling imbalanced datasets remains a 

challenge, especially for deep learning models applied to 

image data. DeepSMOTE addresses this issue by 

combining deep learning techniques with the SMOTE 

algorithm to generate high-quality synthetic images. The 

approach features an encoder-decoder framework, an 

improved SMOTE sampling method, and a loss function 

enhanced with a penalty term. Unlike GAN-based 

approaches, DeepSMOTE does not require a 

discriminator and generates realistic, informative 

synthetic images that improve performance on 

imbalanced datasets. 

3. PROJECT DESCRIPTION 

3.1 Introduction 

Learning from imbalanced data remains one of the critical 

challenges in the machine learning community. 
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Imbalanced class distributions negatively impact the 

training of classifiers, often resulting in a bias toward the 

majority class, leading to high error rates or even the 

complete omission of minority classes. This imbalance is 

particularly detrimental in real-world applications such as 

medical diagnostics and intrusion detection, where the 

accurate recognition of minority classes is crucial.To 

address the class imbalance issue, extensive research has 

been conducted over the past two decades, leading to the 

development of various algorithms designed to counter 

this problem. However, modern applications reveal that 

imbalanced data often present additional challenges, such 

as difficult and borderline instances, small disjuncts, and 

the drifting nature of streaming data. Consequently, new 

and effective solutions are continually sought to tackle 

these evolving challenges. 

Deep learning, currently the most promising 

branch of machine learning, has demonstrated remarkable 

capabilities in cognitive and recognition tasks. 

Nevertheless, deep architectures remain highly vulnerable 

to imbalanced data distributions and associated 

challenges, such as complex data representations and 

learning from large numbers of classes. Traditional 

methods, like the Synthetic Minority Oversampling 

Technique (SMOTE), have shown effectiveness in 

handling imbalanced datasets, yet they face limitations in 

dealing with multimodal data and high intraclass 

overlap.To address these limitations, we propose an 

enhanced version of the DeepSMOTE framework, 

specifically tailored for deep learning models and capable 

of operating efficiently on complex data representations 

such as images. Our modified DeepSMOTE framework 

integrates the strengths of SMOTE with a deep 

architecture, aiming to improve its robustness and 

performance on highly imbalanced datasets. 

3.2  Detailed Diagram 

3.2.1 Back End Module Diagrams 

In Backend module diagram the modules which are used 

is shown in diagrammatic form. There are, Dataset 

processing module, Data splitting module, training 

module and testing module. 

 

 

Figure 3.1 Back End Module Diagrams 

 

3.3 Software Specification 

3.3.1 Hardware Requirements 

The hardware requirements may serve as the basis for a 

contract for the implementation of the system and should 

therefore be a complete and consistent specification of the 

whole system. They are used by software engineers as the 

starting point for the system design. It shows what the 

system does and not how it should be implemented 

Processor :  Intel I5 

RAM :  4GB  

Hard Disk  :   50 GB 
 

3.3.2 Software Requirements 

The software requirements document is the specification 

of the system. It should include both a definition and a 

specification of requirements. It is a set of what the system 

should do rather than how it should do it. The software 

requirements provide a basis for creating the software 

requirements specification.  It is useful in estimating cost, 

planning team activities, performing tasks and tracking 

the team’s and tracking the team’s progress throughout 

the development activity. 

Python Ide                      :   Anaconda Jupyter Notebook 

Programming Language :   Python 

3.4 Module Description 

• Image preprocessing 

• Load and prepare image Dataset 

• Train the Encoder 

• Generate the image  

• Save the image 

3.4.1. Image Preprocessing 

The first step involves loading and preparing the image 

data for training. This process begins by importing 

necessary libraries and utilizing functions from 

frameworks such as TensorFlow or PyTorch. Images are 

loaded from specified directories and are preprocessed to 

ensure uniformity. This preprocessing includes resizing 

images to a consistent dimension, normalizing pixel 

values to a range between 0 and 1, and applying data 

augmentation techniques such as rotations, shifts, and 

flips to enhance the dataset's diversity and robustness.  

3.4.2 Load And Prepare Image Dataset 

Load the appropriate image data that need to be balanced, 

prior loading images need to be preprocessed and need to 

check image formats These steps are crucial for creating 

a well-conditioned dataset that can improve the 

performance of the subsequent models. 

3.4.3 Training the Encoder 

Once the data is prepared, the next step is to train the 

encoder model. The encoder, typically a convolutional 

neural network (CNN) or a Variational Autoencoder 

(VAE), is designed to learn the underlying patterns in the 

image data. The architecture of the encoder includes 
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convolutional layers for feature extraction and dense 

layers for encoding the features into a compact 

representation. The encoder is trained on the preprocessed 

image data, where it learns to map the input images to a 

lower-dimensional latent space. This training process 

involves optimizing the model parameters to minimize 

reconstruction loss and enhance the quality of the learned 

representations. 

3.4.4 Generating the Image 

After the encoder is trained, the decoder model is used to 

generate new images. The decoder, which is paired with 

the encoder, takes the latent space representations and 

reconstructs them into full-sized images. By sampling 

from the latent space, the decoder generates new images 

that are similar to the original dataset but not exact 

replicas. This process allows for the creation of novel 

images based on the patterns learned during training. The 

generated images are then visualized or saved for further 

use. 

3.4.5 Saving the Image 

Finally, the generated images are saved to disk for future 

reference or application. This involves using image 

processing libraries to write the images to files in formats 

such as PNG or JPEG. Saving these images ensures that 

they can be accessed later for evaluation, integration into 

other systems, or presentation. The saved images can be 

reviewed to assess the quality of the image generation and 

determine if further adjustments to the model or training 

process are needed. This workflow provides a structured 

approach to handling image data, from initial preparation 

Algorithm Used Encoder and Decoder  

Encoders and decoders are fundamental components of 

many deep learning models, especially in tasks involving 

sequence-to-sequence (seq2seq) predictions, such as 

machine translation, image captioning, and text 

summarization. These architectures transform input data 

into a fixed-size representation and then decode this 

representation back into the desired output format. 

Encoders 

An encoder is a neural network that processes input data 

to produce a fixed-size representation, often referred to as 

a context vector or latent vector. The goal of the encoder 

is to capture the essential features and patterns of the input 

data in a compressed form. Architecture Encoders can 

take various forms depending on the type of input data. 

Recurrent Neural Network (RNN) Encoders: Commonly 

used for sequential data, such as text or time series. 

Variants include Long Short-Term Memory (LSTM) and 

Gated Recurrent Units (GRUs). Convolutional Neural 

Network (CNN) Encoders: Typically used for image data, 

where convolutional layers extract spatial features. 

Transformer Encoders: Utilize self-attention mechanisms 

to process sequential data in parallel, capturing global 

dependencies efficiently. 

Functionality  

The encoder processes the input through a series of layers, 

each transforming the data into a higher-level 

representation. In RNNs, this involves processing the 

sequence step-by-step, updating hidden states. In CNNs, 

it involves applying convolutional filters to detect 

patterns. In transformers, it involves applying self-

attention to capture relationships between all elements in 

the sequence. 

Decoders 

A decoder is a neural network that transforms the fixed-

size representation produced by the encoder back into the 

desired output format. The decoder aims to reconstruct the 

original input data or generate a new output based on the 

encoded representation. Architecture: Similar to 

encoders, decoders can take various forms RNN 

Decoders: Generate sequences step-by-step, using the 

context vector from the encoder as initial input. CNN 

Decoders: Typically used in tasks like image generation 

or super-resolution, where deconvolutional layers 

reconstruct the spatial dimensions. Transformer 

Decoders: Use self-attention and encoder-decoder 

attention mechanisms to generate sequences in parallel. 

Functionality: The decoder starts with the context vector 

from the encoder and produces the output iteratively or in 

parallel. In seq2seq models, the decoder uses the context 

vector and generates the output sequence one element at a 

time, often employing techniques like beam search for 

improved performance. In CNN decoders, up sampling 

techniques like transposed convolutions or interpolation 

restore the original image size. 

Transformer Models 

The transformer model, introduced in the paper 

"Attention is All You Need" by Vaswani et al., 

revolutionized the field of deep learning, particularly in 

NLP. It employs self-attention mechanisms to handle 

dependencies in sequential data more effectively than 

RNNs. Architecture: The transformer consists of an 

encoder and a decoder, each composed of multiple layers 

of self-attention and feed-forward networks. Key 

components include.   Self-Attention Mechanism: Allows 

the model to weigh the importance of different elements 

in the input sequence, capturing long-range dependencies 

efficiently. Positional Encoding Since transformers do not 

process data sequentially, positional encodings are added 

to input embeddings to provide information about the 

order of the sequence. Multi-Head Attention: Improves 

the model's ability to focus on different parts of the input 

by applying multiple attention mechanisms in parallel. 

Feed-Forward Network. Applies non-linear 

transformations to the output of the attention layers, 

enhancing the model's representational power. Encoder in 

Transformers The encoder consists of multiple identical 

layers, each containing A multi-head self-attention 
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mechanism. A position-wise feed-forward network. Layer 

normalization and residual connections to stabilize 

training. Decoder in Transformers The decoder also 

consists of multiple identical layers, each containing A 

masked multi-head self-attention mechanism to prevent 

positions from attending to future positions during 

training.  

 

Figure 3.2 Transformer Models 

 

3.5 System Design 

Designing of system is the process in which it is used to 

define the interface, modules and data for a system to 

specified the demand to satisfy. System design is seen as 

the application of the system theory. The main thing of the 

design a system is to develop the system architecture by 

giving the data and information that is necessary for the 

implementation of a system. 

3.5.1 Architecture Diagram 

 

Figure 3.3 Architecture Diagram 

3.5.2 Data Flow Diagram 

Data flow diagrams are used to graphically represent the 

flow of data in a business information system. DFD 

describes the processes that are involved in a system to 

transfer data from the input to the file storage and reports 

generation. 

 

 

 

 

 

 

 

Figure 3.4 Data Flow Diagram 

3.5.3 Use case Diagram 

Use case diagrams are a way to capture the system's 

functionality and requirements in UML diagrams. It 

captures the dynamic behavior of a live system. A use 

case diagram consists of a use case and an actor.  

 

 

Figure 3.5 Use case Diagram 
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3.5.4 Class Diagram 

Class diagrams are the main building block in object-

oriented modeling. They are used to show the different 

objects in a system, their attributes, their operations and 

the relationships among them 

 

 

 

 

 

 

Figure 3.6 Class Diagram 

3.5.5 Sequence Diagram 

The sequence diagram of a system shows the entity 

interplay are ordered in the time order level. So, that it 

drafts the classes and object that are imply in the that plot 

and also the series of message exchange take place 

betwixt the body that need to be carried out by the purpose 

of that scenario. 

Figure 3.7 Sequence Diagram 

3.5.6 State Flow Diagram 

The below state chart diagram describes the flow of 

control from one state to another state (event) in the flow 

of the events from the creation of an object to its 

termination 

Figure 3.8 State Flow Diagram 

 

3.5.7 Activity Diagram 

Activity Diagrams describe how activities are coordinated 

to provide a service which can be at different levels of 

abstraction. Typically, an event needs to be achieved by 

operations, particularly where the operation is intended to 

achieve a number of different things that require 

coordination 

 

 

 

 

 

 

 

Figure 3.9 Activity Diagram 

 

Figure 3.10 Colloboration diagram 

 

Figure 3.11 Component Diagram 
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Figure 3.12 Object Diagram 

 

Figure 3.13 Deployement Diagram 

4. Software Specification 

4.1 General 

It is a free and open-source distribution of the Python and 

R programming languages for scientific computing (data 

science, machine learning applications, large-scale data 

processing, predictive analytics, etc.), that aims to 

simplify package management and deployment. 

4.2 Anaconda 

Anaconda distribution comes with more than 1,500 

packages as well as the Conda package and virtual 

environment manager. It also includes a GUI, Anaconda 

Navigator, as a graphical alternative to the Command 

Line Interface (CLI). The big difference between Conda 

and the pip package manager is in how package 

dependencies are managed, which is a significant 

challenge for Python data science and the reason Conda 

exists. Pip installs all Python package dependencies 

required, whether or not those conflict with other 

packages you installed previously.  So, your working 

installation of, for example, Google Tensorflow, can 

suddenly stop working when you pip install a different 

package that needs a different version of the Numpy 

library. More insidiously, everything might still appear to 

work but now you get different results from your data 

science, or you are unable to reproduce the same results 

elsewhere because you didn't pip install in the same order. 

Conda analyzes your current environment, everything you 

have installed, any version limitations you specify (e.g. 

you only want tensorflow>= 2.0) and figures out how to 

install compatible dependencies. Or it will tell you that 

what you want can't be done. Pip, by contrast, will just 

install the thing you wanted and any dependencies, even 

if that breaks other things.Open source packages can be 

individually installed from the Anaconda repository, 

Anaconda Cloud (anaconda.org), or your own private 

repository or mirror, using the conda install command. 

Anaconda Inc compiles and builds all the packages in the 

Anaconda repository itself, and provides binaries for 

Windows 32/64 bit, Linux 64 bit and MacOS 64-bit. You 

can also install anything on PyPI into a Conda 

environment using pip, and Conda knows what it has 

installed and what pip has installed. Custom packages can 

be made using the conda build command, and can be 

shared with others by uploading them to Anaconda 

Cloud, PyPI or other repositories.The default installation 

of Anaconda2 includes Python 2.7 and Anaconda3 

includes Python 3.7. However, you can create new 

environments that include any version of Python 

packaged with conda. 

 

Figure 4.1 Anaconda Navigator 

Anaconda Navigator is a desktop Graphical User 

Interface (GUI) included in Anaconda distribution that 

allows users to launch applications and manage conda 

packages, environments and channels without 

using command-line commands. Navigator can search for 

packages on Anaconda Cloud or in a local Anaconda 

Repository, install them in an environment, run the 

packages and update them. It is available 

for Windows, macOS and Linux. 

The following applications are available by default in 

Navigator: 
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• JupyterLab 

• Jupyter Notebook 

• QtConsole 

• Spyder 

• Glueviz 

• Orange 

• Rstudio 

• Visual Studio Code 

Microsoft .NET is a set of Microsoft software 

technologies for rapidly building and integrating XML 

Web services, Microsoft Windows-based applications, 

and Web solutions. The .NET Framework is a language-

neutral platform for writing programs that can easily and 

securely interoperate. There’s no language barrier with 

.NET: there are numerous languages available to the 

developer including Managed C++, C#, Visual Basic and 

Java Script. The .NET framework provides the foundation 

for components to interact seamlessly, whether locally or 

remotely on different platforms. It standardizes common 

data types and communications protocols so that 

components created in different languages can easily 

interoperate.  “.NET” is also the collective name given to 

various software components built upon the .NET 

platform. These will be both products (Visual Studio.NET 

and Windows.NET Server, for instance) and services (like 

Passport, .NET My Services, and so on). Microsoft 

VISUAL STUDIO  is an Integrated Development 

Environment (IDE) from Microsoft. It is used to develop 

computer programs, as well as websites, web apps, web 

services and mobile apps. 

 

Figure 4.2 Microsoft VISUAL STUDIO 

Python is a powerful multi-purpose programming 

language created by Guido van Rossum. It has simple 

easy-to-use syntax, making it the perfect language for 

someone trying to learn computer programming for the 

first time. Python features are 

• Easy to code 

• Free and Open Source 

• Object-Oriented Language 

• GUI Programming Support 

• High-Level Language 

• Extensible feature 

• Python is Portable language 

• Python is Integrated language 

• Interpreted  

• Large Standard Library 

• Dynamically Typed Language 
 

4.3 PYTHON 

• Python is a powerful multi-purpose programming 

language created by Guido van Rossum. It has simple 

easy-to-use syntax, making it the perfect language for 

someone trying to learn computer programming for the 

first time. 

Features Of Python 

1.Easy to code Python is high level programming 

language. Python is very easy to learn language as 

compared to other language like c, c#, java script, java etc. 

It is very easy to code in python language and anybody 

can learn python basic in few hours or days. It is also 

developer-friendly language. 

2. Free and Open-Source Python language is freely 

available at official website and you can download it from 

the given download link below click on the Download 

Python keyword. Since, it is open-source, this means that 

source code is also available to the public. So you can 

download it as, use it as well as share it. 

3. Object-Oriented Language One of the key features of 

python is Object-Oriented programming. Python supports 

object-oriented language and concepts of classes, objects 

encapsulation etc. 

4. GUI Programming Support Graphical Users interfaces 

can be made using a module such as PyQt5, PyQt4, 

wxPython or Tk in python. PyQt5 is the most popular 

option for creating graphical apps with Python. 

5. High-Level Language Python is a high-level language. 

When we write programs in python, we do not need to 

remember the system architecture, nor do we need to 

manage the memory. 

6. Extensible feature Python is a Extensible language. we 

can write our some python code into c or c++ language 

and also we can compile that code in c/c++ language. 

7. Python is Portable language Python language is also a 

portable language. for example, if we have python code 

for windows and if we want to run this code on other 

platform such as Linux, Unix and Mac then we do not 

need to change it, we can run this code on any platform. 

8. Python is Integrated language Python is also an 

Integrated language because we can easily integrated 

python with other language like c, c++ etc. 

9. Interpreted Language Python is an Interpreted 

Language. because python code is executed line by line at 

a time. like other language c, c++, java etc there is no need 

to compile python code this makes it easier to debug our 

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 130

https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Lab
https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook
https://qtconsole.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Spyder_(software)
http://glueviz.org/
https://en.wikipedia.org/wiki/Orange_(software)
https://en.wikipedia.org/wiki/Rstudio
https://en.wikipedia.org/wiki/Visual_Studio_Code


code. The source code of python is converted into an 

immediate form called bytecode. 

10. Large Standard Library Python has a large standard 

library which provides rich set of module and functions so 

you do not have to write your own code for every single 

thing. There are many libraries present in python for such 

as regular expressions, unit-testing, web browsers etc. 

11. Dynamically Typed Language Python is dynamically-

typed language. That means the type (for example- int, 

double, long etc) for a variable is decided at run time not 

in advance. Because of this feature we don’t need to 

specify the type of variable. 

Applications of Python 

Web Applications 

• You can create scalable Web Apps using frameworks 

and CMS (Content Management System) that are built on 

Python. Some of the popular platforms for creating Web 

Apps are: Django, Flask, Pyramid, Plone, Django CMS. 

• Sites like Mozilla, Reddit, Instagram and PBS are 

written in Python. 

4.3.1 Scientific and Numeric Computing 

• There are numerous libraries available in Python for 

scientific and numeric computing. There are libraries 

like:SciPy and NumPy that are used in general purpose 

computing. And, there are specific libraries like: EarthPy 

for earth science, AstroPy for Astronomy and so on. 

• Also, the language is heavily used in machine 

learning, data mining and deep learning. 

4.3.2 Creating Software Prototypes 

• Python is slow compared to compiled languages like 

C++ and Java. It might not be a good choice if resources 

are limited and efficiency is a must. 

• However, Python is a great language for creating 

prototypes. For example: You can use Pygame (library for 

creating games) to create your game's prototype first. If 

you like the prototype, you can use language like C++ to 

create the actual game. 

4.3.3 Good Language to Teach Programming 

Python is used by many companies to teach  rogramming 

to kids  It is a good language with a lot of features and 

capabilities. Yet, it's one of the easiest language to learn 

because of its simple easy-to-use system. 

4.4 Testing 

White Box Testing is software testing technique in which 

internal structure, design and coding of software are tested 

to verify flow of input-output and to improve design, 

usability and security. In white box testing, code is visible 

to testers so it is also called Clear box testing, Open box 

testing, Transparent box testing, Code-based testing and 

Glass box testing. White box testing techniques analyze 

the internal structures the used data structures, internal 

design, code structure and the working of the software 

rather than just the functionality as in black box testing. 

It is also called glass box testing or clear box testing or 

structural testing. 

Working Process of White Box Testing 

• Input: Requirements, Functional specifications, design 

documents, source code. Processing: Performing risk 

analysis for guiding through the entire process. Proper 

test planning: Designing test cases so as to cover entire 

code. Execute rinse-repeat until error-free software is 

reached. Also, the results are communicated. 

Output: Preparing final report of the entire testing 

process 

Unit Testing 

Unit testing involves the design of test cases that validate 

that the internal program logic is functioning properly, 

and that program input produce valid outputs. All decision 

branches and internal code flow should be validated. It is 

the testing of individual software units of the application 

.it is done after the completion of an individual unit before 

integration. This is a structural testing, that relies on 

knowledge of its construction and is invasive. Unit tests 

perform basic tests at component level and test a specific 

business process, application, and/or system 

configuration. Unit tests ensure that each unique path of a 

business process performs accurately to the documented 

specifications and contains clearly defined inputs and 

expected results. 

Functional Test 

Functional tests provide systematic demonstrations that 

functions tested are available as specified by the business 

and technical requirements, system documentation, and 

user manuals. Functional testing is centered on the 

following items. Valid Input identified classes of valid 

input must be accepted. Invalid Input: identified classes 

of invalid input must be rejected. Functions identified 

functions must be exercised. Output identified classes of 

application outputs must be exercised Systems/ 

Procedures interfacing systems or procedures must be 

invoked. 

System Test 

System testing ensures that the entire integrated software 

system meets requirements. It tests a configuration to 

ensure known and predictable results. An example of 

system testing is the configuration-oriented system 

integration test. System testing is based on process 

descriptions and flows, emphasizing pre-driven process 

links and integration points. 

Performance Test 

The Performance test ensures that the output be produced 

within the time limits, and the time taken by the system 

for compiling, giving response to the users and request 

being send to the system for to retrieve the results. 

Integration Testing 

Software integration testing is the incremental integration 

testing of two or more integrated software components on 
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a single platform to produce failures caused by interface 

defects. The task of the integration test is to check that 

components or software applications, e.g. components in 

a software system or – one step up – software applications 

at the company level  interact without error. 

Acceptance Testing 

User Acceptance Testing is a critical phase of any project 

and requires significant participation by the end user. It 

also ensures that the system meets the functional 

requirements. 

Acceptance testing for Data Synchronization 

• The Acknowledgements will be received by the Sender 

Node after the Packets are received by the Destination 

Node 

• The Route add operation is done only when there is a 

Route request in need 

• The Status of Nodes information is done automatically 

in the Cache Updating process 

5. IMPLEMENTATION 

Python is a program that was originally designed to 

simplify the implementation of numerical linear algebra 

routines. It has since grown into something much bigger, 

and it is used to implement numerical algorithms for a 

wide range of applications. 

Figure 5.1 Output generated images 

CONCLUSION 

In this work, we introduced DeepSMOTE, a pioneering 

model designed to address the challenges of imbalanced 

data distributions in machine learning. By integrating the 

widely recognized SMOTE algorithm with advanced 

deep learning techniques, DeepSMOTE offers a robust 

solution for oversampling and balancing training datasets. 

This novel framework represents a significant 

advancement in handling class imbalance, particularly in 

the context of image data.DeepSMOTE stands out for its 

ability to operate directly on raw images, generate 

efficient low-dimensional embeddings, and produce high-

quality synthetic images. These capabilities are enabled 

by a unique architecture that combines an encoder-

decoder framework with SMOTE-based oversampling 

and an enhanced loss function. This integration allows 

DeepSMOTE to create artificial instances that effectively 

balance the training set, thereby mitigating bias and 

improving the performance of deep classifiers.Our 

extensive experimental evaluations demonstrate that 

DeepSMOTE surpasses existing state-of-the-art methods, 

including pixel-based and GAN-based oversampling 

algorithms. It not only excels in generating high-quality 

synthetic images but also exhibits remarkable robustness 

across various imbalance ratios, providing high model 

stability. The quality of the artificial images produced by 

DeepSMOTE is consistently superior, further validating 

its efficacy as an advanced resampling algorithm. 

FUTURE WORK 

Future work for the DeepSmote project could focus on 

several key areas to advance its capabilities and 

applications. Enhancing the algorithm itself could involve 

optimizing deep learning models, exploring hybrid 

approaches by combining DeepSmote with other 

oversampling techniques, and developing adaptive 

sampling methods to better handle varying levels of data 

complexity. To improve model training and evaluation, 

integrating advanced data augmentation techniques, 

expanding benchmarking to diverse datasets, and creating 

new metrics to assess synthetic data quality would be 

beneficial. Additionally, efforts could be directed toward 

improving computational efficiency through model 

optimization and developing scalable implementations for 

large datasets. Exploring practical applications in fields 

like healthcare and finance, while creating user-friendly 

tools for practitioners, will help extend DeepSmote's 

impact. On a theoretical level, understanding the model's 

behavior and generalization capabilities can provide 

deeper insights into its effectiveness. Engaging with the 

community through open-source development and 

educational resources will foster collaboration and ease of 

use. Finally, addressing ethical considerations by 

examining biases and ensuring transparency in synthetic 

data generation will promote fairness and trust in 

DeepSmote's applications. 
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