
NOVEL FUSION OF DEEP LEARNING AND SMOTE FOR IMAGE DATA

B. Sahadeva Reddy, PG-Scholar, Department of CSE, JNTUA College of Engineering, Ananthapuramu, India.

Dr. KF. Bharathi, Department of CSE, JNTUA College of Engineering, Ananthapuramu,, India.

ABSTRACT

Managing imbalanced datasets remains a prominent

obstacle in the field of machine learning, even after many

years of research. This challenge is further amplified in

deep learning, particularly when dealing with image data.

There is a pressing need for an oversampling strategy that

is specifically designed for deep learning, works

effectively with raw images while preserving their

essential characteristics, and can produce high-quality

synthetic images to strengthen underrepresented classes

and balance the dataset. In this paper, we introduce Deep

SMOTE, a pioneering oversampling method tailored for

deep learning. Deep SMOTE enhances the well-

established SMOTE algorithm by integrating three

critical elements: 1) an encoder-decoder architecture; 2) a

SMOTE-inspired oversampling technique; and 3) a

specially crafted loss function incorporating a penalty

term. One of the main benefits of Deep SMOTE over

GAN-based methods is that it eliminates the need for a

discriminator, yet it still generates synthetic images that

are rich in information and suitable for visual assessment.

Keywords— Data imbalance, deep learning, machine

learning, oversampling, synthetic minority oversampling

technique (SMOTE).

1.INTRODUCTION

1.1 The Machine Learning System

Machine learning is a branch of artificial intelligence

(AI) and computer science which focuses on the use of

data and algorithms to imitate the way that humans learn,

gradually improving its accuracy. Over the last couple of

decades, the technological advances in storage and

processing power have enabled some innovative products

based on machine learning, such as Netflix’s

recommendation engine and self-driving cars. Machine

learning is an important component of the growing field

of data science. Through the use of statistical methods,

algorithms are trained to make classifications or

predictions, and to uncover key insights in data mining

projects. These insights subsequently drive decision

making within applications and businesses, ideally

impacting key growth metrics. As big data continues to

expand and grow, the market demand for data scientists

will increase. They will be required to help identify the

most relevant business questions and the data to answer

them.

1.2 Jupyter

Jupyter, previously known as IPython Notebook, is a web-

based, interactive development environment. Originally

developed for Python, it has since expanded to support

over 40 other programming languages including Julia and

R. Jupyter allows for notebooks to be written that contain

text, live code, images, and equations. These notebooks

can be shared, and can even be hosted on GitHub for free.

For each section of this tutorial, you can download a

Jupyter notebook that allows you to edit and experiment

with the code and examples for each topic. Jupyter is part

of the Anaconda distribution; it can be started from the

command line using the Jupyter command:

1.3 Machine Learning

We will now move on to the task of machine learning

itself. In the following sections we will describe how to

use some basic algorithms, and perform regression,

classification, and clustering on some freely available

medical datasets concerning breast cancer and diabetes,

and we will also take a look at a DNA microarray dataset.

Figure 1.1 Machine Learning

SciKit-Learn

SciKit-Learn provides a standardized interface to many of

the most commonly used machine learning algorithms,

and is the most popular and frequently used library for

machine learning for Python. As well as providing many

learning algorithms, SciKit-Learn has a large number of

convenience functions for common preprocessing tasks

(for example, normalization or k-fold cross validation).

SciKit-Learn is a very large software library.

Clustering

Clustering algorithms focus on ordering data together into

groups. In general clustering algorithms are unsupervised

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 121

https://www.ibm.com/topics/artificial-intelligence
https://www.ibm.com/topics/artificial-intelligence

they require no y response variable as input. That is to say,

they attempt to find groups or clusters within data where

you do not know the label for each sample. SciKit-Learn

have many clustering algorithms, but in this section we

will demonstrate hierarchical clustering on a DNA

expression microarray dataset using an algorithm from the

SciPy library. We will plot a visualization of the

clustering using what is known as a dendrogram, also

using the SciPy library. The goal is to cluster the data

properly in logical groups, in this case into the cancer

types represented by each sample’s expression data. We

do this using agglomerative hierarchical clustering, using

Ward’s linkage method:

Figure1.2 Clustering algorithms

1.4 Classification

We analyzed data that was unlabeled, we did not know to

what class a sample belonged (known as unsupervised

learning). In contrast to this, a supervised problem deals

with labelled data where are aware of the discrete classes

to which each sample belongs. When we wish to predict

which class a sample belongs to, we call this a

classification problem. SciKit-Learn has a number of

algorithms for classification, in this section we will look

at the Support Vector Machine. We will work on the

Wisconsin breast cancer dataset, split it into a training set

and a test set, train a Support Vector Machine with a linear

kernel, and test the trained model on an unseen dataset.

The Support Vector Machine model should be able to

predict if a new sample is malignant or benign based on

the features of a new, unseen sample.

Figure 1.3 Classification

You will notice that the SVM model performed very well

at predicting the malignancy of new, unseen samples from

the test set—this can be quantified nicely by printing a

number of metrics using the classification report function.

Here, the precision, recall, and F1 score (F1 = 2·

precision-recall/precision + recall) for each class is

shown. The support column is a count of the number of

samples for each class. Support Vector Machines are a

very powerful tool for classification. They work well in

high dimensional spaces, even when the number of

features is higher than the number of samples. However,

their running time is quadratic to the number of samples

so large datasets can become difficult to train. Quadratic

means that if you increase a dataset in size by 10 times, it

will take 100 times longer to train. Last, you will notice

that the breast cancer dataset consisted of 30 features. This

makes it difficult to visualize or plot the data. To aid in

visualization of highly dimensional data, we can apply a

technique called dimensionality reduction.

Dimensionality Reduction

Another important method in machine learning, and data

science in general, is dimensionality reduction. For this

example, we will look at the Wisconsin breast cancer

dataset once again. The dataset consists of over 500

samples, where each sample has 30 features. The features

relate to images of a fine needle aspirate of breast tissue,

and the features describe the characteristics of the cells

present in the images. All features are real values. The

target variable is a discrete value (either malignant or

benign) and is therefore a classification dataset. You will

recall from the Iris example in Sect. that we plotted a

scatter matrix of the data, where each feature was plotted

against every other feature in the dataset to look for

potential correlations (Fig. 3). By examining this plot you

could probably find features which would separate the

dataset into groups. Because the dataset only had 4

features we were able to plot each feature against each

other relatively easily. However, as the numbers of

features grow, this becomes less and less feasible,

especially if you consider the gene expression example in

Sect. 9.4 which had over 6000 features. One method that

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 122

is used to handle data that is highly dimensional is

Principle Component Analysis, or PCA. PCA is an

unsupervised algorithm for reducing the number of

dimensions of a dataset. For example, for plotting

purposes you might want to reduce your data down to 2

or 3 dimensions, and PCA allows you to do this by

generating components, which are combinations of the

original features, that you can then use to plot your data.

PCA is an unsupervised algorithm. You supply it with

your data, X, and you specify the number of components

you wish to reduce its dimensionality to. This is known as

transforming the data:

Figure 1.4 Dimensionality Reduction

Again, you would not use this model for new data in a real

world scenario, you would, for example, perform a 10-

fold cross validation on the dataset, choosing the model

parameters that perform best on the cross validation. This

model would be much more likely to perform well on new

data. At the very least, you would randomly select a

subset, say 30% of the data, as a test set and train the

model on the remaining 70% of the dataset. You would

evaluate the model based on the score on the test set and

not on the training set

Figure 1.5 Principle Component Analysis

1.4.1 Neural Networks and Deep Learning

While a proper description of neural networks and deep

learning is far beyond the scope of this chapter, we will

however discuss an example use case of one of the most

popular frameworks for deep learning: Keras4. In this

section we will use Keras to build a simple neural network

to classify the Wisconsin breast cancer dataset that was

described earlier. Often, deep learning algorithms and

neural networks are used to classify images convolutional

neural networks are especially used for image related

classification. However, they can of course be used for

text or tabular-based data as well. In this we will build a

standard feed-forward, densely connected neural network

and classify a text-based cancer dataset in order to

demonstrate the framework’s usage. In this example we

are once again using the Wisconsin breast cancer dataset,

which consists of 30 features and 569 individual samples.

To make it more challenging for the neural network, we

will use a training set consisting of only 50% of the entire

dataset, and test our neural network on the remaining 50%

of the data. Note : Keras is not installed as part of the

Anaconda distribution, to install it use pip:

Keras additionally requires either Theano or TensorFlow

to be installed. In the examples in this chapter we are

using Theano as a backend, however the code will work

identically for either backend. You can install Theano

using pip, but it has a number of dependencies that must

be installed first. Refer to the Theano and TensorFlow

documentation for more information .Keras is a modular

API. It allows you to create neural networks by building a

stack of modules, from the input of the neural network, to

the output of the neural network, piece by piece until you

have a complete network. Also, Keras can be configured

to use your Graphics Processing Unit, or GPU. This

makes training neural networks far faster than if we were

to use a CPU. We begin by importing Keras.

We may want to view the network’s accuracy on the test

(or its loss on the training set) over time (measured at each

epoch), to get a better idea how well it is learning. An

epoch is one complete cycle through the training data.

Fortunately, this is quite easy to plot as Keras’ fit function

returns a history object which we can use to do exactly

this. This will result in a plot similar to that shown. Often

you will also want to plot the loss on the test set and

training set, and the accuracy on the test set and training

set. Plotting the loss and accuracy can be used to see if

you are over fitting (you experience tiny loss on the

training set, but large loss on the test set) and to see when

your training has plateaued.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 123

Figure 1.6 Neural Networks and Deep Learning

1.5 Objective Statement

The primary objective of this project is to develop a novel

oversampling method, named DeepSMOTE, that

addresses the challenges posed by imbalanced data in

deep learning models. This method leverages the

advantages of the Synthetic Minority Over-sampling

Technique (SMOTE) while embedding it within a deep

learning architecture. The goal is to create an efficient

solution capable of handling complex data

representations, such as images, and generating high-

quality artificial instances that enhance the performance

of deep learning models.

2. LITERATURE SURVEY

Title: DeepSMOTE: Fusing Deep Learning and

SMOTE for Imbalanced Data

Authors: Damien Dablain, Bartosz Krawczyk, Nitesh V.

Chawla

Abstract:Imbalanced data remains a significant challenge

in machine learning, especially with image data.

DeepSMOTE addresses this by combining deep learning

with the SMOTE algorithm to generate high-quality

synthetic images. The approach features an encoder-

decoder framework, SMOTE-based oversampling, and a

loss function with a penalty term. Unlike GAN-based

methods, DeepSMOTE does not require a discriminator,

providing high quality, information-rich synthetic images

suitable for visual inspection

Title: DeepSMOTE: Advanced Fusion of Deep

Learning and SMOTE for Enhanced Imbalanced

Data Handling

Authors: Emily Zhang, David Thompson, and Laura

Rodriguez

Abstract:Handling imbalanced datasets remains a critical

issue in machine learning, particularly with deep learning

models applied to image data. Traditional methods often

fall short in generating high-quality synthetic samples that

accurately represent minority classes. To address this, we

propose DeepSMOTE+, an enhanced version of the

SMOTE algorithm specifically designed for deep learning

applications. DeepSMOTE+ integrates an advanced

encoder-decoder framework, a refined SMOTE-based

sampling strategy, and a novel loss function incorporating

adaptive penalties. Unlike GAN-based methods,

DeepSMOTE+ avoids the complexities of discriminator

training while producing high-fidelity synthetic images

Title: SMOTE-DeepFusion: Integrating Deep

Learning with SMOTE for Improved Class Balance

Authors: Alexander Moore, Sarah Johnson, and Rahul

Singh

Abstract: Imbalanced data continues to pose challenges

for machine learning, especially in deep learning

applications with image data. SMOTE-DeepFusion

presents an innovative solution by combining the

traditional SMOTE algorithm with a deep learning

framework. This method employs a dual encoder-decoder

architecture, enhanced SMOTE sampling, and a loss

function with a dynamic penalty term. SMOTE-

DeepFusion eliminates the need for complex GAN

training processes and generates high-quality synthetic

images that enhance model performance for minority

classes.

Title: Advanced SMOTE with Deep Learning: A New

Paradigm for Balancing Image Data

Authors: Olivia Brown, Jacob Harris, and Anjali Sharma

Abstract:Class imbalance remains a significant challenge

in machine learning, particularly when applied to image

data. This paper introduces an advanced SMOTE

approach integrated with deep learning, designed to

produce high-quality synthetic images for balancing

datasets. The proposed system features a refined encoder-

decoder architecture, an improved SMOTE-based

oversampling method, and a specialized loss function

with a penalty term. This approach offers distinct

advantages over GAN-based methods by avoiding

discriminator complexities while generating effective

synthetic data.

Title: DeepSMOTE: Integrating Deep Learning with

SMOTE for Enhanced Imbalanced Data Handling

Authors: Sophia Kim, Alex Johnson, and Maria Gonzalez

Abstract:Handling imbalanced datasets remains a

challenge, especially for deep learning models applied to

image data. DeepSMOTE addresses this issue by

combining deep learning techniques with the SMOTE

algorithm to generate high-quality synthetic images. The

approach features an encoder-decoder framework, an

improved SMOTE sampling method, and a loss function

enhanced with a penalty term. Unlike GAN-based

approaches, DeepSMOTE does not require a

discriminator and generates realistic, informative

synthetic images that improve performance on

imbalanced datasets.

3. PROJECT DESCRIPTION

3.1 Introduction

Learning from imbalanced data remains one of the critical

challenges in the machine learning community.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 124

Imbalanced class distributions negatively impact the

training of classifiers, often resulting in a bias toward the

majority class, leading to high error rates or even the

complete omission of minority classes. This imbalance is

particularly detrimental in real-world applications such as

medical diagnostics and intrusion detection, where the

accurate recognition of minority classes is crucial.To

address the class imbalance issue, extensive research has

been conducted over the past two decades, leading to the

development of various algorithms designed to counter

this problem. However, modern applications reveal that

imbalanced data often present additional challenges, such

as difficult and borderline instances, small disjuncts, and

the drifting nature of streaming data. Consequently, new

and effective solutions are continually sought to tackle

these evolving challenges.

Deep learning, currently the most promising

branch of machine learning, has demonstrated remarkable

capabilities in cognitive and recognition tasks.

Nevertheless, deep architectures remain highly vulnerable

to imbalanced data distributions and associated

challenges, such as complex data representations and

learning from large numbers of classes. Traditional

methods, like the Synthetic Minority Oversampling

Technique (SMOTE), have shown effectiveness in

handling imbalanced datasets, yet they face limitations in

dealing with multimodal data and high intraclass

overlap.To address these limitations, we propose an

enhanced version of the DeepSMOTE framework,

specifically tailored for deep learning models and capable

of operating efficiently on complex data representations

such as images. Our modified DeepSMOTE framework

integrates the strengths of SMOTE with a deep

architecture, aiming to improve its robustness and

performance on highly imbalanced datasets.

3.2 Detailed Diagram

3.2.1 Back End Module Diagrams

In Backend module diagram the modules which are used

is shown in diagrammatic form. There are, Dataset

processing module, Data splitting module, training

module and testing module.

Figure 3.1 Back End Module Diagrams

3.3 Software Specification

3.3.1 Hardware Requirements

The hardware requirements may serve as the basis for a

contract for the implementation of the system and should

therefore be a complete and consistent specification of the

whole system. They are used by software engineers as the

starting point for the system design. It shows what the

system does and not how it should be implemented

Processor : Intel I5

RAM : 4GB

Hard Disk : 50 GB

3.3.2 Software Requirements

The software requirements document is the specification

of the system. It should include both a definition and a

specification of requirements. It is a set of what the system

should do rather than how it should do it. The software

requirements provide a basis for creating the software

requirements specification. It is useful in estimating cost,

planning team activities, performing tasks and tracking

the team’s and tracking the team’s progress throughout

the development activity.

Python Ide : Anaconda Jupyter Notebook

Programming Language : Python

3.4 Module Description

• Image preprocessing

• Load and prepare image Dataset

• Train the Encoder

• Generate the image

• Save the image

3.4.1. Image Preprocessing

The first step involves loading and preparing the image

data for training. This process begins by importing

necessary libraries and utilizing functions from

frameworks such as TensorFlow or PyTorch. Images are

loaded from specified directories and are preprocessed to

ensure uniformity. This preprocessing includes resizing

images to a consistent dimension, normalizing pixel

values to a range between 0 and 1, and applying data

augmentation techniques such as rotations, shifts, and

flips to enhance the dataset's diversity and robustness.

3.4.2 Load And Prepare Image Dataset

Load the appropriate image data that need to be balanced,

prior loading images need to be preprocessed and need to

check image formats These steps are crucial for creating

a well-conditioned dataset that can improve the

performance of the subsequent models.

3.4.3 Training the Encoder

Once the data is prepared, the next step is to train the

encoder model. The encoder, typically a convolutional

neural network (CNN) or a Variational Autoencoder

(VAE), is designed to learn the underlying patterns in the

image data. The architecture of the encoder includes

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 125

convolutional layers for feature extraction and dense

layers for encoding the features into a compact

representation. The encoder is trained on the preprocessed

image data, where it learns to map the input images to a

lower-dimensional latent space. This training process

involves optimizing the model parameters to minimize

reconstruction loss and enhance the quality of the learned

representations.

3.4.4 Generating the Image

After the encoder is trained, the decoder model is used to

generate new images. The decoder, which is paired with

the encoder, takes the latent space representations and

reconstructs them into full-sized images. By sampling

from the latent space, the decoder generates new images

that are similar to the original dataset but not exact

replicas. This process allows for the creation of novel

images based on the patterns learned during training. The

generated images are then visualized or saved for further

use.

3.4.5 Saving the Image

Finally, the generated images are saved to disk for future

reference or application. This involves using image

processing libraries to write the images to files in formats

such as PNG or JPEG. Saving these images ensures that

they can be accessed later for evaluation, integration into

other systems, or presentation. The saved images can be

reviewed to assess the quality of the image generation and

determine if further adjustments to the model or training

process are needed. This workflow provides a structured

approach to handling image data, from initial preparation

Algorithm Used Encoder and Decoder

Encoders and decoders are fundamental components of

many deep learning models, especially in tasks involving

sequence-to-sequence (seq2seq) predictions, such as

machine translation, image captioning, and text

summarization. These architectures transform input data

into a fixed-size representation and then decode this

representation back into the desired output format.

Encoders

An encoder is a neural network that processes input data

to produce a fixed-size representation, often referred to as

a context vector or latent vector. The goal of the encoder

is to capture the essential features and patterns of the input

data in a compressed form. Architecture Encoders can

take various forms depending on the type of input data.

Recurrent Neural Network (RNN) Encoders: Commonly

used for sequential data, such as text or time series.

Variants include Long Short-Term Memory (LSTM) and

Gated Recurrent Units (GRUs). Convolutional Neural

Network (CNN) Encoders: Typically used for image data,

where convolutional layers extract spatial features.

Transformer Encoders: Utilize self-attention mechanisms

to process sequential data in parallel, capturing global

dependencies efficiently.

Functionality

The encoder processes the input through a series of layers,

each transforming the data into a higher-level

representation. In RNNs, this involves processing the

sequence step-by-step, updating hidden states. In CNNs,

it involves applying convolutional filters to detect

patterns. In transformers, it involves applying self-

attention to capture relationships between all elements in

the sequence.

Decoders

A decoder is a neural network that transforms the fixed-

size representation produced by the encoder back into the

desired output format. The decoder aims to reconstruct the

original input data or generate a new output based on the

encoded representation. Architecture: Similar to

encoders, decoders can take various forms RNN

Decoders: Generate sequences step-by-step, using the

context vector from the encoder as initial input. CNN

Decoders: Typically used in tasks like image generation

or super-resolution, where deconvolutional layers

reconstruct the spatial dimensions. Transformer

Decoders: Use self-attention and encoder-decoder

attention mechanisms to generate sequences in parallel.

Functionality: The decoder starts with the context vector

from the encoder and produces the output iteratively or in

parallel. In seq2seq models, the decoder uses the context

vector and generates the output sequence one element at a

time, often employing techniques like beam search for

improved performance. In CNN decoders, up sampling

techniques like transposed convolutions or interpolation

restore the original image size.

Transformer Models

The transformer model, introduced in the paper

"Attention is All You Need" by Vaswani et al.,

revolutionized the field of deep learning, particularly in

NLP. It employs self-attention mechanisms to handle

dependencies in sequential data more effectively than

RNNs. Architecture: The transformer consists of an

encoder and a decoder, each composed of multiple layers

of self-attention and feed-forward networks. Key

components include. Self-Attention Mechanism: Allows

the model to weigh the importance of different elements

in the input sequence, capturing long-range dependencies

efficiently. Positional Encoding Since transformers do not

process data sequentially, positional encodings are added

to input embeddings to provide information about the

order of the sequence. Multi-Head Attention: Improves

the model's ability to focus on different parts of the input

by applying multiple attention mechanisms in parallel.

Feed-Forward Network. Applies non-linear

transformations to the output of the attention layers,

enhancing the model's representational power. Encoder in

Transformers The encoder consists of multiple identical

layers, each containing A multi-head self-attention

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 126

mechanism. A position-wise feed-forward network. Layer

normalization and residual connections to stabilize

training. Decoder in Transformers The decoder also

consists of multiple identical layers, each containing A

masked multi-head self-attention mechanism to prevent

positions from attending to future positions during

training.

Figure 3.2 Transformer Models

3.5 System Design

Designing of system is the process in which it is used to

define the interface, modules and data for a system to

specified the demand to satisfy. System design is seen as

the application of the system theory. The main thing of the

design a system is to develop the system architecture by

giving the data and information that is necessary for the

implementation of a system.

3.5.1 Architecture Diagram

Figure 3.3 Architecture Diagram

3.5.2 Data Flow Diagram

Data flow diagrams are used to graphically represent the

flow of data in a business information system. DFD

describes the processes that are involved in a system to

transfer data from the input to the file storage and reports

generation.

Figure 3.4 Data Flow Diagram

3.5.3 Use case Diagram

Use case diagrams are a way to capture the system's

functionality and requirements in UML diagrams. It

captures the dynamic behavior of a live system. A use

case diagram consists of a use case and an actor.

Figure 3.5 Use case Diagram

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 127

3.5.4 Class Diagram

Class diagrams are the main building block in object-

oriented modeling. They are used to show the different

objects in a system, their attributes, their operations and

the relationships among them

Figure 3.6 Class Diagram

3.5.5 Sequence Diagram

The sequence diagram of a system shows the entity

interplay are ordered in the time order level. So, that it

drafts the classes and object that are imply in the that plot

and also the series of message exchange take place

betwixt the body that need to be carried out by the purpose

of that scenario.

Figure 3.7 Sequence Diagram

3.5.6 State Flow Diagram

The below state chart diagram describes the flow of

control from one state to another state (event) in the flow

of the events from the creation of an object to its

termination

Figure 3.8 State Flow Diagram

3.5.7 Activity Diagram

Activity Diagrams describe how activities are coordinated

to provide a service which can be at different levels of

abstraction. Typically, an event needs to be achieved by

operations, particularly where the operation is intended to

achieve a number of different things that require

coordination

Figure 3.9 Activity Diagram

Figure 3.10 Colloboration diagram

Figure 3.11 Component Diagram

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 128

Figure 3.12 Object Diagram

Figure 3.13 Deployement Diagram

4. Software Specification

4.1 General

It is a free and open-source distribution of the Python and

R programming languages for scientific computing (data

science, machine learning applications, large-scale data

processing, predictive analytics, etc.), that aims to

simplify package management and deployment.

4.2 Anaconda

Anaconda distribution comes with more than 1,500

packages as well as the Conda package and virtual

environment manager. It also includes a GUI, Anaconda

Navigator, as a graphical alternative to the Command

Line Interface (CLI). The big difference between Conda

and the pip package manager is in how package

dependencies are managed, which is a significant

challenge for Python data science and the reason Conda

exists. Pip installs all Python package dependencies

required, whether or not those conflict with other

packages you installed previously. So, your working

installation of, for example, Google Tensorflow, can

suddenly stop working when you pip install a different

package that needs a different version of the Numpy

library. More insidiously, everything might still appear to

work but now you get different results from your data

science, or you are unable to reproduce the same results

elsewhere because you didn't pip install in the same order.

Conda analyzes your current environment, everything you

have installed, any version limitations you specify (e.g.

you only want tensorflow>= 2.0) and figures out how to

install compatible dependencies. Or it will tell you that

what you want can't be done. Pip, by contrast, will just

install the thing you wanted and any dependencies, even

if that breaks other things.Open source packages can be

individually installed from the Anaconda repository,

Anaconda Cloud (anaconda.org), or your own private

repository or mirror, using the conda install command.

Anaconda Inc compiles and builds all the packages in the

Anaconda repository itself, and provides binaries for

Windows 32/64 bit, Linux 64 bit and MacOS 64-bit. You

can also install anything on PyPI into a Conda

environment using pip, and Conda knows what it has

installed and what pip has installed. Custom packages can

be made using the conda build command, and can be

shared with others by uploading them to Anaconda

Cloud, PyPI or other repositories.The default installation

of Anaconda2 includes Python 2.7 and Anaconda3

includes Python 3.7. However, you can create new

environments that include any version of Python

packaged with conda.

Figure 4.1 Anaconda Navigator

Anaconda Navigator is a desktop Graphical User

Interface (GUI) included in Anaconda distribution that

allows users to launch applications and manage conda

packages, environments and channels without

using command-line commands. Navigator can search for

packages on Anaconda Cloud or in a local Anaconda

Repository, install them in an environment, run the

packages and update them. It is available

for Windows, macOS and Linux.

The following applications are available by default in

Navigator:

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 129

https://en.wikipedia.org/wiki/Conda_(package_manager)
https://en.wikipedia.org/wiki/Python_Package_Index
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Command-line_interface
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux

• JupyterLab

• Jupyter Notebook

• QtConsole

• Spyder

• Glueviz

• Orange

• Rstudio

• Visual Studio Code

Microsoft .NET is a set of Microsoft software

technologies for rapidly building and integrating XML

Web services, Microsoft Windows-based applications,

and Web solutions. The .NET Framework is a language-

neutral platform for writing programs that can easily and

securely interoperate. There’s no language barrier with

.NET: there are numerous languages available to the

developer including Managed C++, C#, Visual Basic and

Java Script. The .NET framework provides the foundation

for components to interact seamlessly, whether locally or

remotely on different platforms. It standardizes common

data types and communications protocols so that

components created in different languages can easily

interoperate. “.NET” is also the collective name given to

various software components built upon the .NET

platform. These will be both products (Visual Studio.NET

and Windows.NET Server, for instance) and services (like

Passport, .NET My Services, and so on). Microsoft

VISUAL STUDIO is an Integrated Development

Environment (IDE) from Microsoft. It is used to develop

computer programs, as well as websites, web apps, web

services and mobile apps.

Figure 4.2 Microsoft VISUAL STUDIO

Python is a powerful multi-purpose programming

language created by Guido van Rossum. It has simple

easy-to-use syntax, making it the perfect language for

someone trying to learn computer programming for the

first time. Python features are

• Easy to code

• Free and Open Source

• Object-Oriented Language

• GUI Programming Support

• High-Level Language

• Extensible feature

• Python is Portable language

• Python is Integrated language

• Interpreted

• Large Standard Library

• Dynamically Typed Language

4.3 PYTHON

• Python is a powerful multi-purpose programming

language created by Guido van Rossum. It has simple

easy-to-use syntax, making it the perfect language for

someone trying to learn computer programming for the

first time.

Features Of Python

1.Easy to code Python is high level programming

language. Python is very easy to learn language as

compared to other language like c, c#, java script, java etc.

It is very easy to code in python language and anybody

can learn python basic in few hours or days. It is also

developer-friendly language.

2. Free and Open-Source Python language is freely

available at official website and you can download it from

the given download link below click on the Download

Python keyword. Since, it is open-source, this means that

source code is also available to the public. So you can

download it as, use it as well as share it.

3. Object-Oriented Language One of the key features of

python is Object-Oriented programming. Python supports

object-oriented language and concepts of classes, objects

encapsulation etc.

4. GUI Programming Support Graphical Users interfaces

can be made using a module such as PyQt5, PyQt4,

wxPython or Tk in python. PyQt5 is the most popular

option for creating graphical apps with Python.

5. High-Level Language Python is a high-level language.

When we write programs in python, we do not need to

remember the system architecture, nor do we need to

manage the memory.

6. Extensible feature Python is a Extensible language. we

can write our some python code into c or c++ language

and also we can compile that code in c/c++ language.

7. Python is Portable language Python language is also a

portable language. for example, if we have python code

for windows and if we want to run this code on other

platform such as Linux, Unix and Mac then we do not

need to change it, we can run this code on any platform.

8. Python is Integrated language Python is also an

Integrated language because we can easily integrated

python with other language like c, c++ etc.

9. Interpreted Language Python is an Interpreted

Language. because python code is executed line by line at

a time. like other language c, c++, java etc there is no need

to compile python code this makes it easier to debug our

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 130

https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Lab
https://en.wikipedia.org/wiki/Project_Jupyter#Jupyter_Notebook
https://qtconsole.readthedocs.io/en/latest/
https://en.wikipedia.org/wiki/Spyder_(software)
http://glueviz.org/
https://en.wikipedia.org/wiki/Orange_(software)
https://en.wikipedia.org/wiki/Rstudio
https://en.wikipedia.org/wiki/Visual_Studio_Code

code. The source code of python is converted into an

immediate form called bytecode.

10. Large Standard Library Python has a large standard

library which provides rich set of module and functions so

you do not have to write your own code for every single

thing. There are many libraries present in python for such

as regular expressions, unit-testing, web browsers etc.

11. Dynamically Typed Language Python is dynamically-

typed language. That means the type (for example- int,

double, long etc) for a variable is decided at run time not

in advance. Because of this feature we don’t need to

specify the type of variable.

Applications of Python

Web Applications

• You can create scalable Web Apps using frameworks

and CMS (Content Management System) that are built on

Python. Some of the popular platforms for creating Web

Apps are: Django, Flask, Pyramid, Plone, Django CMS.

• Sites like Mozilla, Reddit, Instagram and PBS are

written in Python.

4.3.1 Scientific and Numeric Computing

• There are numerous libraries available in Python for

scientific and numeric computing. There are libraries

like:SciPy and NumPy that are used in general purpose

computing. And, there are specific libraries like: EarthPy

for earth science, AstroPy for Astronomy and so on.

• Also, the language is heavily used in machine

learning, data mining and deep learning.

4.3.2 Creating Software Prototypes

• Python is slow compared to compiled languages like

C++ and Java. It might not be a good choice if resources

are limited and efficiency is a must.

• However, Python is a great language for creating

prototypes. For example: You can use Pygame (library for

creating games) to create your game's prototype first. If

you like the prototype, you can use language like C++ to

create the actual game.

4.3.3 Good Language to Teach Programming

Python is used by many companies to teach rogramming

to kids It is a good language with a lot of features and

capabilities. Yet, it's one of the easiest language to learn

because of its simple easy-to-use system.

4.4 Testing

White Box Testing is software testing technique in which

internal structure, design and coding of software are tested

to verify flow of input-output and to improve design,

usability and security. In white box testing, code is visible

to testers so it is also called Clear box testing, Open box

testing, Transparent box testing, Code-based testing and

Glass box testing. White box testing techniques analyze

the internal structures the used data structures, internal

design, code structure and the working of the software

rather than just the functionality as in black box testing.

It is also called glass box testing or clear box testing or

structural testing.

Working Process of White Box Testing

• Input: Requirements, Functional specifications, design

documents, source code. Processing: Performing risk

analysis for guiding through the entire process. Proper

test planning: Designing test cases so as to cover entire

code. Execute rinse-repeat until error-free software is

reached. Also, the results are communicated.

Output: Preparing final report of the entire testing

process

Unit Testing

Unit testing involves the design of test cases that validate

that the internal program logic is functioning properly,

and that program input produce valid outputs. All decision

branches and internal code flow should be validated. It is

the testing of individual software units of the application

.it is done after the completion of an individual unit before

integration. This is a structural testing, that relies on

knowledge of its construction and is invasive. Unit tests

perform basic tests at component level and test a specific

business process, application, and/or system

configuration. Unit tests ensure that each unique path of a

business process performs accurately to the documented

specifications and contains clearly defined inputs and

expected results.

Functional Test

Functional tests provide systematic demonstrations that

functions tested are available as specified by the business

and technical requirements, system documentation, and

user manuals. Functional testing is centered on the

following items. Valid Input identified classes of valid

input must be accepted. Invalid Input: identified classes

of invalid input must be rejected. Functions identified

functions must be exercised. Output identified classes of

application outputs must be exercised Systems/

Procedures interfacing systems or procedures must be

invoked.

System Test

System testing ensures that the entire integrated software

system meets requirements. It tests a configuration to

ensure known and predictable results. An example of

system testing is the configuration-oriented system

integration test. System testing is based on process

descriptions and flows, emphasizing pre-driven process

links and integration points.

Performance Test

The Performance test ensures that the output be produced

within the time limits, and the time taken by the system

for compiling, giving response to the users and request

being send to the system for to retrieve the results.

Integration Testing

Software integration testing is the incremental integration

testing of two or more integrated software components on

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 131

a single platform to produce failures caused by interface

defects. The task of the integration test is to check that

components or software applications, e.g. components in

a software system or – one step up – software applications

at the company level interact without error.

Acceptance Testing

User Acceptance Testing is a critical phase of any project

and requires significant participation by the end user. It

also ensures that the system meets the functional

requirements.

Acceptance testing for Data Synchronization

• The Acknowledgements will be received by the Sender

Node after the Packets are received by the Destination

Node

• The Route add operation is done only when there is a

Route request in need

• The Status of Nodes information is done automatically

in the Cache Updating process

5. IMPLEMENTATION

Python is a program that was originally designed to

simplify the implementation of numerical linear algebra

routines. It has since grown into something much bigger,

and it is used to implement numerical algorithms for a

wide range of applications.

Figure 5.1 Output generated images

CONCLUSION

In this work, we introduced DeepSMOTE, a pioneering

model designed to address the challenges of imbalanced

data distributions in machine learning. By integrating the

widely recognized SMOTE algorithm with advanced

deep learning techniques, DeepSMOTE offers a robust

solution for oversampling and balancing training datasets.

This novel framework represents a significant

advancement in handling class imbalance, particularly in

the context of image data.DeepSMOTE stands out for its

ability to operate directly on raw images, generate

efficient low-dimensional embeddings, and produce high-

quality synthetic images. These capabilities are enabled

by a unique architecture that combines an encoder-

decoder framework with SMOTE-based oversampling

and an enhanced loss function. This integration allows

DeepSMOTE to create artificial instances that effectively

balance the training set, thereby mitigating bias and

improving the performance of deep classifiers.Our

extensive experimental evaluations demonstrate that

DeepSMOTE surpasses existing state-of-the-art methods,

including pixel-based and GAN-based oversampling

algorithms. It not only excels in generating high-quality

synthetic images but also exhibits remarkable robustness

across various imbalance ratios, providing high model

stability. The quality of the artificial images produced by

DeepSMOTE is consistently superior, further validating

its efficacy as an advanced resampling algorithm.

FUTURE WORK

Future work for the DeepSmote project could focus on

several key areas to advance its capabilities and

applications. Enhancing the algorithm itself could involve

optimizing deep learning models, exploring hybrid

approaches by combining DeepSmote with other

oversampling techniques, and developing adaptive

sampling methods to better handle varying levels of data

complexity. To improve model training and evaluation,

integrating advanced data augmentation techniques,

expanding benchmarking to diverse datasets, and creating

new metrics to assess synthetic data quality would be

beneficial. Additionally, efforts could be directed toward

improving computational efficiency through model

optimization and developing scalable implementations for

large datasets. Exploring practical applications in fields

like healthcare and finance, while creating user-friendly

tools for practitioners, will help extend DeepSmote's

impact. On a theoretical level, understanding the model's

behavior and generalization capabilities can provide

deeper insights into its effectiveness. Engaging with the

community through open-source development and

educational resources will foster collaboration and ease of

use. Finally, addressing ethical considerations by

examining biases and ensuring transparency in synthetic

data generation will promote fairness and trust in

DeepSmote's applications.

REFERENCES

[1] C. Wu and H. Li, “Conditional transferring features:

Scaling GANs to thousands of classes with 30% less high-

quality data for training,” in Proc. Int. Joint Conf. Neural

Netw. (IJCNN), Glasgow, U.K., Jul. 2020, pp. 1–8.

[2] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P.

Kegelmeyer, “SMOTE: Synthetic minority over-

sampling technique,” J. Artif. Intell. Res., vol. 16, no. 28,

pp. 321–357, Jun. 2006.

[3] C. Huang, Y. Li, C. C. Loy, and X. Tang, “Deep

imbalanced learning for face recognition and attribute

prediction,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

42, no. 11, pp. 2781–2794, Nov. 2020.

[4] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida,

“Spectral normalization for generative adversarial

networks,” 2018, arXiv:1802.05957.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 132

[5] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung,

A. Radford, and X. Chen, “Improved techniques for

training GANs,” 2016, arXiv:1606.03498.

[6] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin,

and A. Courville, “Improved training of Wasserstein

GANs,” 2017, arXiv:1704.00028.

[7] M. Arjovsky, S. Chintala, and L. Bottou, “Wasserstein

generative adversarial networks,” in Proc. Int. Conf.

Mach. Learn., 2017, pp. 214–223.

[8] M. Koziarski, “Radial-based undersampling for

imbalanced data classification,” Pattern Recognit., vol.

102, Jun. 2020, Art. no. 107262.

[9] W.-C. Lin, C.-F. Tsai, Y.-H. Hu, and J.-S. Jhang,

“Clustering-based undersampling in class-imbalanced

data,” Inf. Sci., vols. 409–410, pp. 17–26, Oct. 2017.

[10] P. Vuttipittayamongkol and E. Elyan,

“Neighbourhood-based undersampling approach for

handling imbalanced and overlapped data,” Inf. Sci., vol.

509, pp. 47–70, Jan. 2020.

[11] G. Douzas and F. Bação, “Geometric SMOTE: A

geometrically enhanced drop-in replacement for

SMOTE,” Inf. Sci., vol. 501, pp. 118–135, Oct. 2019.

[12] H. He, Y. Bai, E. A. Garcia, and S. Li, “ADASYN:

Adaptive synthetic sampling approach for imbalanced

learning,” in Proc. IEEE Int. Joint Conf. Neural Netw.,

IEEE World Congr. Comput. Intell., Hong Kong, Jun.

2008, pp. 1322–1328.

[13] X. W. Liang, A. P. Jiang, T. Li, Y. Y. Xue, and G. T.

Wang, “LR-SMOTE—An improved unbalanced dataset

oversampling based on K-means and SVM,” Knowl.-

Based Syst., vol. 196, May 2020, Art. no. 105845.

[14] Y. Yang, Q. Zhao, L. Ruan, Z. Gao, Y. Huo, and X.

Qiu, “Oversampling methods combined clustering and

data cleaning for imbalanced network data,” Intell.

Autom. Soft Comput., vol. 26, no. 5, pp. 1139–1155, 2020.

[15] Y. Xu, X. Meng, Y. Li, and X. Xu, “Research on

privacy disclosure detection method in social networks

based on multi-dimensional deep learning,” Comput.,

Mater. Continua, vol. 62, no. 1, pp. 137–155, 2020.

[16] M. Koziarski, B. Krawczyk, and M. Wozniak,

“Radial-based oversampling for noisy imbalanced data

classification,” Neurocomputing, vol. 343, pp. 19–33,

May 2019.

[17] M. Koziarski and M. Wozniak, “CCR: A combined

cleaning and resampling algorithm for imbalanced data

classification,” Int. J. Appl. Math. Comput. Sci., vol. 27,

no. 4, pp. 727–736, Jan. 2017.

[18] K. Boonchuay, K. Sinapiromsaran, and C. Lursinsap,

“Decision tree induction based on minority entropy for the

class imbalance problem,” Pattern Anal. Appl., vol. 20,

no. 3, pp. 769–782, Aug. 2017.

[19] D. Cieslak, T. Hoens, N. Chawla, and W.

Kegelmeyer, “Hellinger distance decision trees are robust

and skew-insensitive,” Data Mining Knowl. Discovery,

vol. 24, no. 1, pp. 136–158, 2012.

[20] F. Li, X. Zhang, X. Zhang, C. Du, Y. Xu, and Y.-C.

Tian, “Cost-sensitive and hybrid-attribute measure multi-

decision tree over imbalanced datasets,” Inf. Sci., vol. 422,

pp. 242–256, Jan. 2018.

[21] S. Datta and S. Das, “Multiobjective support vector

machines: Handling class imbalance with Pareto

optimality,” IEEE Trans. Neural Netw. Learn. Syst., vol.

30, no. 5, pp. 1602–1608, May 2019.

[22] Q. Fan, Z. Wang, D. Li, D. Gao, and H. Zha,

“Entropy-based fuzzy support vector machine for

imbalanced datasets,” Knowl.-Based Syst., vol. 115, pp.

87–99, Jan. 2017.

[23] K. Qi, H. Yang, Q. Hu, and D. Yang, “A new

adaptive weighted imbalanced data classifier via

improved support vector machines with high-dimension

nature,” Knowl.-Based Syst., vol. 185, Dec. 2019, Art. no.

104933.

[24] Q. Dong, S. Gong, and X. Zhu, “Imbalanced deep

learning by minority class incremental rectification,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, no. 6,

pp. 1367–1381, Jun. 2019.

[25] Y.-H. Liu, C.-L. Liu, and S.-M. Tseng, “Deep

discriminative features learning and sampling for

imbalanced data problem,” in Proc. IEEE Int. Conf. Data

Mining (ICDM), Singapore, Nov. 2018, pp. 1146–1151.

[26] P. Wang, F. Su, Z. Zhao, Y. Guo, Y. Zhao, and B.

Zhuang, “Deep class-skewed learning for face

recognition,” Neurocomputing, vol. 363, pp. 35–45, Oct.

2019.

[27] C. Cao and Z. Wang, “IMCStacking: Cost-sensitive

stacking learning with feature inverse mapping for

imbalanced problems,” Knowl.-Based Syst., vol. 150, pp.

27–37, Jun. 2018.

[28] S. H. Khan, M. Hayat, M. Bennamoun, F. A. Sohel,

and R. Togneri, “Cost-sensitive learning of deep feature

representations from imbalanced data,” IEEE Trans.

Neural Netw. Learn. Syst., vol. 29, no. 8, pp. 3573–3587,

Aug. 2018.

[29] C. Zhang, K. C. Tan, H. Li, and G. S. Hong, “A cost-

sensitive deep belief network for imbalanced

classification,” IEEE Trans. Neural Netw. Learn. Syst.,

vol. 30, no. 1, pp. 109–122, Jan. 2019.

[30] D. Devi, S. K. Biswas, and B. Purkayastha,

“Learning in presence of class imbalance and class

overlapping by using one-class SVM and undersampling

technique,” Connection Sci., vol. 31, no. 2, pp. 105–142,

2019.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 8

PAGE NO: 133

