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Abstract—The increasing integration of renewable energy
sources within smart microgrids has led to the emergence of
prosumer-based energy systems, where consumers actively
produce, store, and trade electricity. Effective Energy
Management Systems (EMS) are essential to ensure cost
efficiency, environmental sustainability, and operational
stability under fluctuating renewable conditions. This paper
proposes a Multi-Objective Prosumer Energy Management
framework using an Improved Grey Wolf Optimization
(IGWO) algorithm for hybrid renewable microgrids comprising
solar PV, wind turbines, battery storage, and grid connection.
The IGWO introduces chaotic initialization, adaptive
convergence control, and an elitism strategy to enhance global
search capability and avoid premature convergence. The dual-
objective model simultaneously minimizes total operating cost
and CO: emissions through optimized scheduling of distributed
energy resources and grid exchanges. Simulation results
demonstrate that IGWO outperforms conventional algorithms
such as PSO, DE, and MSGO, achieving up to 15-18% cost
reduction and 12% emission minimization with faster
convergence and lower computational time. Moreover, the
algorithm exhibits robust performance under renewable
uncertainty, maintaining near-optimal results under +10%
generation variability. These findings confirm that IGWO
provides a scalable, efficient, and sustainable optimization
framework for next-generation smart microgrids, promoting
economically viable and low-carbon energy management.

Keywords—Battery Energy Storage, CO: Emission Reduction,
Energy Management System, Grey Wolf Optimization, Multi-
Objective Optimization, Prosumer Microgrid.

1. INTRODUCTION

A. Background

The transition toward decentralized and sustainable energy
systems has led to the emergence of prosumer-based smart
microgrids, where individuals or entities act both as producers
and consumers of electricity. In such systems, prosumers can
generate power from distributed renewable energy sources
(RES) such as solar photovoltaic (PV) panels and wind
turbines, store surplus energy using battery energy storage
systems (BESS), and trade excess electricity with neighboring
users or the main grid. This bidirectional energy flow
enhances local energy resilience, reduces dependence on
conventional fossil-fuel generation, and supports global
decarbonization goals [1].

However, managing this complex energy ecosystem
presents significant challenges. The intermittent nature of
renewable sources, coupled with time-varying load demand
and dynamic electricity prices, necessitates a coordinated
decision-making framework. To ensure economic efficiency
and system reliability, a smart Energy Management System
(EMS) is required [2]. The EMS performs optimal scheduling
of generation, storage, and grid exchange, balancing multiple
conflicting objectives such as minimizing energy costs,
reducing emissions, and maintaining operational stability.
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Fig. 1. Schematic representation of a hybrid prosumer-based smart
microgrid integrating solar PV, wind turbine, battery storage, and grid
interconnection.

In this context, EMS optimization plays a pivotal role in
enhancing prosumer participation while ensuring that
renewable energy is utilized effectively. The inclusion of
multi-energy carriers (solar, wind, battery, and grid) and
multiple time-dependent constraints transforms the energy
management task into a nonlinear, multi-objective, and non-
convex optimization problem. Hence, the development of
robust and intelligent optimization techniques becomes
critical for efficient microgrid operation.
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Fig. 1 illustrates bidirectional energy flows among
distributed resources, highlighting the EMS’s central control
role in coordinating generation, storage, and trading decisions
[3].

B. Motivation

Traditional optimization algorithms such as Particle
Swarm Optimization (PSO), Genetic Algorithm (GA), and
Modified Social Group Optimization (MSGO) have been
widely applied in microgrid energy scheduling. Although
these methods provide acceptable results for small-scale or
static systems, they exhibit several inherent limitations when
applied to complex, dynamic, and uncertain microgrid
environments [4][5].

e Premature convergence: Many classical metaheuristics
tend to get trapped in local minima, particularly under
nonlinear and multi-modal objective functions.

e Parameter sensitivity: Algorithmic performance often
depends heavily on fine-tuned parameters, reducing
adaptability.

e Limited multi-objective handling:  Traditional
approaches primarily focus on single-objective
optimization, failing to balance multiple conflicting
objectives such as cost reduction and emission
minimization simultaneously.

As global energy systems evolve toward decarbonization,
it becomes essential to optimize not only for economic
performance but also for environmental sustainability.
Therefore, multi-objective optimization has gained increasing
importance, offering the ability to generate Pareto-optimal
solutions that represent a trade-off between different
objectives. By employing advanced metaheuristics, such as
improved variants of Grey Wolf Optimization (GWO), the
EMS can achieve adaptive, faster, and more reliable
convergence, addressing the limitations of earlier techniques
while improving system-level decision-making under
uncertainty.

C. Literature Review Summary

Several studies have focused on improving the efficiency
and sustainability of microgrid operations using various
optimization approaches. Cost optimization remains a key
objective, with algorithms such as PSO, Differential
Evolution (DE), and MSGO being used to minimize total
operational costs through effective dispatch of renewable
resources and storage management. Although these methods
offer reasonable performance, their convergence behavior
often degrades in high-dimensional search spaces [6].

On the other hand, emission minimization and
environmental optimization have been addressed using multi-
objective algorithms such as Non-dominated Sorting Genetic
Algorithm-II (NSGA-II) and Multi-Objective Evolutionary
Algorithm based on Decomposition (MOEA/D) [7]. These
techniques are effective in generating Pareto fronts, but they
require substantial computational effort and parameter
calibration, which limits their real-time applicability.

Recent works on hybrid renewable scheduling under
uncertainty have introduced probabilistic forecasting,
stochastic modeling, and hybrid heuristics to handle the
intermittency of renewables. Despite these advances, existing
frameworks often optimize cost or emissions in isolation,
lacking a comprehensive multi-objective strategy that

simultaneously balances both. Moreover, limited comparative
evaluation using enhanced heuristic variants restricts the
validation of algorithmic robustness and scalability [8].

Thus, there is a clear research gap in developing an
optimization framework that is robust, adaptive, and capable
of achieving a cost-emission balance in dynamic hybrid
microgrids.

D. Objectives and Contributions

To address these challenges, the present work proposes a
Multi-Objective Prosumer Energy Management System
employing an Improved Grey Wolf Optimization (IGWO)
algorithm tailored for hybrid renewable microgrids. The
primary objectives of this research are:

1. Develop a multi-objective prosumer EMS that
optimally coordinates distributed generation, battery
storage, and grid interaction in hybrid renewable
microgrids.

2. Propose an Improved Grey Wolf Optimization
(IGWO) algorithm incorporating chaos-based
initialization for enhanced population diversity and
adaptive coefficient control for balanced exploration
and exploitation.

3. Formulate a dual-objective optimization model that
simultaneously minimizes the total operating cost and
CO: emissions, ensuring both economic and
environmental sustainability.

4. Validate the proposed IGWO through comparative
simulation against baseline algorithms (MSGO, PSO,
and DE), demonstrating superior convergence speed,
solution quality, and stability.

5. Perform sensitivity and convergence analyses to
evaluate the robustness of the proposed EMS under
renewable resource variability and dynamic load
conditions.

By integrating these contributions, the study aims to
provide a scalable, efficient, and sustainable optimization
framework for next-generation smart microgrids, thereby
supporting the global transition toward carbon-neutral energy
ecosystems.

II. SYSTEM DESCRIPTION

A. Microgrid Configuration

The proposed system represents a hybrid renewable
prosumer-based microgrid that integrates solar photovoltaic
(PV) arrays, wind turbines, a Battery Energy Storage System
(BESS), and a utility grid for energy exchange. The Energy
Management System (EMS) acts as the central controller,
coordinating generation, storage, and trading among multiple
prosumers to achieve optimized cost—emission performance.

The hybrid microgrid operates in grid-connected mode,
allowing prosumers to import or export power based on
generation—demand balance and dynamic electricity tariffs.
The EMS ensures that the optimal share of renewable energy
is utilized before relying on grid power. Each component of
the system plays a crucial role in achieving the desired
operational objectives.

1) Solar Photovoltaic (PV) Array
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The PV array converts incident solar radiation into
electrical power. The power output is governed by solar
irradiance and temperature, modeled as [9]:

Ppy (t) = npy X Apy X G(t) (€Y
where 7npyis the conversion efficiency, Apyis the surface area
of the panels, and G(t) is the solar irradiance at time t. The
PV generation is intermittent and varies throughout the day,
thus requiring coordination with BESS and the grid to balance
supply and demand.

2) Wind Turbine System

The wind turbine converts kinetic wind energy into
electrical energy through its rotor blades and generator. The
mechanical power captured from the wind is given by [10]:

1
Pyr(t) = EPAV(t)3Cp(A'ﬁ) (2)

where pis air density, Ais rotor swept area, v(t)is wind
speed, and Cyis the power coefficient as a function of tip-
speed ratio Aand pitch angle . A power curve model defines
the operational range between cut-in and cut-out wind speeds,
beyond which the turbine either starts or stops producing
power.

3) Battery Energy Storage System (BESS)

The BESS plays a dual role: it stores excess renewable
power during low-demand periods and supplies energy during
peak demand or low generation hours. The battery’s charge—
discharge state is represented by the State of Charge (SoC),
given as [11]:

NenPen — Pais/Mais

SOCt+1 = SOCt + (3)
. Erated
subject to:
S0Cpin < SoC: < S0Ch0x
where 7., and 74 denote charging/discharging

efficiencies, and E,;;.q 1S the rated battery capacity.
Maintaining SoC within limits ensures longevity and safe
operation.

4) Grid Connection

The utility grid provides a backup source of electricity and
a trading platform for surplus energy. The EMS determines
buy/sell decisions based on dynamic tariff structures. During
low renewable availability, power is imported from the grid,
while excess generation is exported. This bidirectional
interaction supports both system stability and economic
optimization.

5) Prosumers

Prosumers are end-users equipped with local generation
(e.g., rooftop PV), controllable loads, and possibly storage
units. They can consume, store, or sell energy to the grid or
neighboring users, contributing to distributed energy trading
and demand-side flexibility. The EMS aggregates prosumer
data to coordinate system-wide optimization.

TABLE I. SUMMARY OF KEY SYSTEM PARAMETERS

Component Parameter Symbol / Unit Typical Value /
Description
Solar PV Efficiency (Npy) 15-18%
Area (Apy) 10-20 m? per kW
Wind Turbine  |Cut-in/ Cut-out |( v, Vg, ) 3m/s—25m/s
speed
Rated Power (Pyr) 5-20 kW

Battery (BESS) [Capacity (E {rated}) 10-50 kWh
SoC limits S0C 00, S0Cnax  120-90%
Grid Buy/Sell Tariff |I/kWh Dynamic (time-of-
use)
EMS Control Interval |— 1 hour
Prosumer Average Load P oaa 2-5 kW per unit

In summary, the hybrid renewable microgrid
configuration integrates multiple distributed energy resources
to achieve flexible, low-emission, and cost-effective
operation. The Energy Management System serves as the
intelligent core, dynamically coordinating these components
to optimize performance under varying renewable and
demand conditions.

B. Energy Flow Modeling

Energy flow within the microgrid must satisfy
instantaneous power balance to maintain system stability. At
any time, step t, the relationship among generation, storage,
and consumption is given by [12]:

Ppy (8) + Pywr(t) + Peria,in(t)
= Ploqa (t) + PBESS,charge(t) + PGrid,out (t)

Here: Ppy(t) = Power from PV generation, Py (t) =
Power from wind turbine, Pg; 4 i (t) = Power imported from
the grid, Ppyqq(t)= Load demand, Pggss charge (t)= Power
used for charging the battery, and Pgyiq oy (t) = Power
exported to the grid

This ensures that total generation (including imports)
equals total consumption (including exports and storage). The
EMS dynamically schedules each term in the equation to
achieve operational efficiency while maintaining this power
balance across the optimization horizon.

C. Objective Functions

The proposed optimization model simultaneously
minimizes operational cost and CO: emissions.

1) Objective 1: Minimize Total Cost

The total cost function F; over a time horizon T is
formulated as [13]:

T
Fr = ) Couy(®) X Poriain(®) = Coonr(t) X Pariaoue (£))
t=1
+ Cbattery

where Cpg¢reryrepresents the cost associated with battery
wear and energy throughput. The EMS aims to minimize grid
purchases while maximizing renewable self-consumption and
profitable energy exports.

2) Objective 2: Minimize Emissions
To account for environmental impact, the emission
function F,is expressed as [14]:

T
Fo= ) Eoria(®) X Pariain ()
t=1

where Eg,;q(t) represents the grid emission factor (kg
CO2/kWh) at time t. Reducing F, promotes clean energy
utilization and aligns with sustainability goals.

Constraints:

e Power balance equation (as defined in Section 4.2).
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e Battery operational limits: SoCp,;, < SoC(t) <
SoCnax-

e Renewable availability limits: 0 < Ppy, (t) < PR,
0 < Pyr(t) < PE~.

D. Multi-Objective Formulation

To simultaneously achieve both economic and
environmental targets, a multi-objective optimization
approach is employed. The two objectives are combined using
a weighted-sum formulation [15]:

F=W1F1+W2F2

where w; and w, are the respective weights assigned to
cost and emission objectives, satisfying w; + w, = 1.

By adjusting the weighting factors, the EMS can generate
different Pareto-optimal solutions, offering a trade-off
between cost minimization and emission reduction. The
Improved Grey Wolf Optimization (IGWO) algorithm
explores this trade-off space effectively, ensuring fast
convergence and robust performance under dynamic
renewable conditions.

III. PROPOSED OPTIMIZATION METHOD

This section presents the optimization methodology
adopted for solving the multi-objective energy management
problem in the hybrid prosumer-based microgrid. The
proposed approach is based on the Improved Grey Wolf
Optimization (IGWO) algorithm, an enhanced version of the
standard Grey Wolf Optimization (GWO). The IGWO
introduces several key modifications to improve convergence
speed, global search capability, and solution stability while
balancing the trade-off between cost and emission
minimization.

A. Grey Wolf Optimization (GWO)

The Grey Wolf Optimization (GWO) algorithm,
introduced by Mirjalili et al. (2014), is a nature-inspired
metaheuristic that mimics the leadership hierarchy and
hunting behavior of grey wolves in nature. It is widely used
due to its simplicity, low computational complexity, and
strong exploration—exploitation balance.

1) Inspiration and Hierarchy:
Grey wolves exhibit a social hierarchy consisting of four
ranks:

o o (Alpha): The leader responsible for decision-making
(best solution).

e [ (Beta): The second level, assisting the alpha in
leadership and decision refinement.

e § (Delta): The subordinate level that dominates the rest
of the pack.

e © (Omega): The lowest rank, following higher-ranking
wolves and representing the rest of the search agents.

In optimization terms, the a, B, and 6 wolves represent the
three best candidate solutions, guiding the search process.
Other wolves update their positions in the search space by
encircling and following these leaders.

Exploration and Exploitation Phases:

The hunting process in GWO alternates between two key
behaviors:

e Exploration Phase: Wolves search broadly across the
solution space to identify promising regions.

e Exploitation Phase: Wolves converge toward the
optimal region by refining their positions around the
best solutions.

The algorithm achieves this balance by dynamically
adjusting the convergence coefficient ‘a’, which decreases
linearly from 2 to O over iterations. High values of ‘a’
encourage exploration, while lower values promote
exploitation.

2) Mathematical Model:
Encircling behavior is represented by [16]:

D =|C-X,(t) —X(t) |
X(t+1) =X,(t) —A-D

where: X, (¢): position vector of prey (best solution), X(¢):
position vector of a wolf, A=2a-r; —a,C=2-r, and
r;, I'y: random vectors in [0,1]

The wolves’ positions are updated according to the top
three best wolves (a, B, 8) [17]:

X1=Xa—A1'I C]_X(X_XI
X; =Xs—As | C3- X5 — X |

The final position of each wolf'is determined by averaging
these three influences [18]:

3

This iterative process continues until convergence, where
the a wolf (best candidate) represents the optimal or near-
optimal solution.

B. Improvements Introduced (IGWO)

Although GWO demonstrates strong optimization
capability, it occasionally suffers from premature
convergence and a lack of population diversity in later
iterations. To overcome these drawbacks, the Improved Grey
Wolf Optimization (IGWO) introduces four major
enhancements:

X(t+1) =

1. Chaotic Initialization: The initial population is
generated using a chaotic map (e.g., logistic or tent
map) instead of random initialization. This ensures
better diversity and uniform distribution of wolves in
the search space, improving the global exploration
capability.

2. Adaptive Convergence Factor (a): Instead of linearly
decreasing ‘a’, IGWO employs an adaptive
nonlinear control that reduces the value dynamically
based on the iteration progress and fitness
improvement rate [19]:

t
a=2><(1—(T

max

%)

This adaptive strategy allows broader exploration in early
stages and smoother exploitation near convergence.

3. Nonlinear Parameter Tuning: The control parameters
A and C are adjusted nonlinearly to balance
exploration and exploitation phases dynamically.
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This helps the wolves avoid local optima and
promotes convergence toward the global minimum.

4. Elitism Strategy: To retain the best-found solutions,
IGWO incorporates elitism, where the best few
wolves (top 3-5) from the previous iteration are
preserved into the next generation. This prevents
performance degradation and ensures continuous
progress toward optimality.

Fig. 2 illustrates the iterative process of IGWO, including
chaotic initialization, adaptive parameter control, leader-
based position updates, and convergence monitoring.

Initialize elgorithm parameters:
population size (N), max
iterations (7), weights (w;z)

!

Generate initial wolf population @
using chaotic map for D
improved diversity

v

Rank wolves and identify a
(best), 3 (second-best, and
8 (third-best) leaders

Update adaptive convergence factor
a=2x [1 = [t /Tmax)a]:
tune nonlinear control panmeters (A, C)

o
S

Maintain bal-
ance between

exploration
and exploitation

Maintains balance between exploration and expl-

Update positions of wolves

using a f, and & guidance:

* Encireling prey

 Hunting (average of top 3 wolves)
X(t41) = (X1 + X2+ X3)/3

Convergence
criterion met?
(Max iteration

or minimal change)

Convergence
criterion met?

Output a wolf
as optimal
scheduling decision
(best cost-emission
trade-off)

Fig. 2. Flowchart of the Improved Grey Wolf Optimization IGWO)
Algorithm.

C. Implementation Procedure

The overall implementation of IGWO for the multi-
objective prosumer energy management problem follows the
steps below:

1. Initialization:

e Define algorithm parameters (population size,
maximum iterations, weighting coefficients
Wi, Wy).

e Initialize the wolf population using the chaotic
sequence within the solution bounds.

2. Objective Evaluation:

e For ecach wolf, evaluate the two objective
functions: total operating cost F; and CO:
emissions F,.

e Combine them using the weighted-sum method:
F = W1F1+W2F2.

3. Leader Selection:

e Identify o, B, and & wolves as the top three
solutions based on fitness.

4. Position Update:

e Update positions of all wolves using IGWO’s
adaptive and nonlinear update rules.

e Apply boundary checks to maintain feasible
solutions.

5. Elitism and Pareto Front Update:
e Retain elite solutions for the next generation.

e Record the current Pareto front for multi-
objective visualization.

6. Termination Condition:

e Stop if the maximum iteration count or
convergence threshold is reached.

e OQutput the a wolf as the optimal scheduling
decision for the EMS.

The proposed IGWO framework thus ensures efficient
exploration in early iterations and stable convergence toward
optimal cost-emission trade-offs, outperforming traditional
optimization techniques in robustness, convergence rate, and
overall solution quality.

IV. SIMULATION SETUP AND CASE STUDY

This section presents the simulation configuration and
experimental setup used to evaluate the performance of the
Improved Grey Wolf Optimization (IGWO) algorithm for
multi-objective energy management in a hybrid prosumer-
based microgrid. The simulation aims to assess how
effectively the proposed algorithm minimizes the total
operating cost and CO: emissions compared to benchmark
metaheuristic algorithms.

A. System Data

The hybrid renewable microgrid model comprises solar
PV arrays, wind turbines (WTs), battery energy storage
systems (BESS), prosumers, and a utility grid connection. The
energy management is optimized for a 24-hour scheduling
horizon divided into 1-hour intervals, enabling hourly
decision-making for generation, storage, and trading.

The simulation uses realistic datasets for solar irradiance,
wind speed, load demand, and grid tariff variations. The
irradiance and wind data are taken from a typical
meteorological year (TMY) dataset corresponding to a semi-
urban region with moderate renewable potential. Load profiles
mimic daily residential-consumer demand with morning and
evening peaks, while grid tariffs vary dynamically to represent
time-of-use pricing.

The hardware specifications of system components are
summarized in Table 2, which provides the operational
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characteristics used for

optimization.

and performance parameters

TABLE II. OPERATIONAL CHARACTERISTICS AND PERFORMANCE

PARAMETERS
Component|Parameter Symbol Value/Range| Unit
Solar PV |Rated Power PR 30 kW
Array
Wind Rated Power Pt 25 kW
Turbine
Battery Capacity Eggss 50 kWh
Energy
Storage
Charging/Discharging Neno Nais 092/090 |-
Efficiency
SoC Limits S0Cpin, S0Cpax10-2—0.9 -
Grid Import Tariff Chuy(t) 5-9 /kWh
Export Tariff Coepp (1) 3-5 I/kWh
Inverter Conversion Ninw 0.95 -
Efficiency
Simulation |Time Step - 1 hour -
Horizon

The system operates under the assumption that renewable
generation and demand data are known at each hour
(deterministic case), allowing the EMS to optimize dispatch
decisions for cost-emission trade-offs.

B. Simulation Environment

The proposed IGWO algorithm was implemented and
simulated in MATLAB R2023b and cross-validated using
Python 3.11 for reproducibility. The numerical experiments
were conducted on a workstation equipped with an Intel Core
i7 processor, 16 GB RAM, and Windows 11 OS.

Simulation parameters were configured as follows:
e Number of wolves (population size): 30—50
e Maximum iterations: 100

e Convergence factor (a): Adaptively varied from 2 —
0 using nonlinear decay

e Optimization weights:
0.4(emission)

wy; = 0.6 (cost), w, =

To evaluate algorithmic performance, three comparative
optimization algorithms were employed alongside IGWO:

1. Particle Swarm Optimization (PSO) — known for its
fast convergence but prone to local minima.

2. Differential Evolution (DE) — exhibits good diversity
but slower convergence.

3. Modified Social Group Optimization (MSGO) —
previously used in the author’s earlier work,
providing a relevant benchmark.

All algorithms were tuned to comparable population sizes
and iteration limits to ensure fairness in computational
comparisons. Each algorithm was executed 30 independent
runs to account for stochastic variability, and the best, worst,
and mean results were recorded.

C. Evaluation Metrics
The following quantitative metrics were adopted to assess
and compare optimization performance across all algorithms:

1. Total Operating Cost (X or $): Represents the daily net
energy cost including grid import, export revenue, and

battery operation cost. The objective is to minimize
total expenditure while maximizing local renewable
utilization.

2. CO: Emissions (kg CO./day): Quantifies the carbon
emissions from grid-imported energy based on the
grid’s emission factor (kg CO2/kWh). The goal is to
minimize this value by prioritizing renewable
generation.

3. Convergence Speed: Measures how rapidly each
algorithm reaches near-optimal solutions. Faster
convergence indicates higher computational efficiency
and algorithmic stability.

4. Pareto Optimality Index (POI): For multi-objective
evaluation, POI measures the density and spread of
Pareto-optimal solutions in the cost—emission trade-off
space. A higher POI implies better diversity and
coverage of trade-off solutions.

5. Computational Time (s): Represents the average
runtime per simulation. Lower computational time
reflects improved efficiency without compromising
solution quality.

These metrics jointly provide a comprehensive
performance evaluation framework, allowing both economic
and environmental impacts to be quantified and compared
across optimization methods.

The configured simulation setup thus enables rigorous
validation of the proposed IGWO algorithm under realistic
operating conditions, establishing its superiority in achieving
cost-effective and sustainable energy management in hybrid
prosumer-based microgrids.

V. RESULTS AND DISCUSSION

This section presents and analyzes the results obtained
from the simulation of the proposed Improved Grey Wolf
Optimization (IGWO) algorithm applied to the multi-
objective energy management of a hybrid renewable
microgrid. The results are compared with three benchmark
algorithms — Particle Swarm Optimization (PSO), Modified
Social Group Optimization (MSGO), and Differential
Evolution (DE) — to validate the superiority of IGWO in
terms of convergence, cost efficiency, emission reduction, and
robustness under renewable variability.

A. Convergence Characteristics

The convergence characteristics indicate how rapidly and
effectively an optimization algorithm approaches the optimal
solution over iterations. Figure 5 illustrates the convergence
behavior of IGWO compared to PSO, MSGO, and DE for the
combined cost—emission objective function.

Fig. 3 shows that IGWO achieves faster and smoother
convergence, reaching the optimal solution in nearly 60
iterations, while PSO and MSGO exhibit slower convergence
and minor oscillations. DE shows stable but delayed
convergence.

The figure reveals that IGWO demonstrates the fastest
convergence rate, achieving a stable near-optimal solution
within approximately 60 iterations, whereas PSO and MSGO
require over 90 iterations to stabilize. The improved
convergence of IGWO results from its chaotic initialization
and adaptive parameter control, which enhance exploration in
the early phase and focused exploitation later.
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Fig. 3. Convergence curves for IGWO, PSO, MSGO, and DE algorithms.

The nonlinear control parameter helps avoid premature
convergence by maintaining population diversity, while the
elitism strategy ensures the preservation of high-quality
solutions. The reduced oscillation in IGWO’s convergence
curve indicates greater stability compared to MSGO, which
shows minor fluctuations near the final iterations due to local
search stagnation.

B. Pareto Front Analysis

The Pareto front represents the set of optimal trade-offs
between total operating cost and CO. emissions. Figure 4
shows the Pareto-optimal fronts generated by IGWO and
competing algorithms.

® IGWO (proposed)
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MSGO

DE

IGWO min-cost
IGWO min-emission

105 |

#¥poe

100 -

95

CO2 Emissions (kg / day)

90
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Total Operating Cost (| / day;

Fig. 4. Pareto front comparison between IGWO, PSO, MSGO, and DE for
cost—emission trade-off.

In Fig. 4, IGWO demonstrates a wider and smoother
Pareto front, offering better distribution and more balanced
trade-offs between cost and emission objectives.

IGWO produces a denser and more evenly distributed
Pareto front, indicating superior exploration of the trade-off
space. This allows decision-makers to select solutions
according to their preferred cost—emission balance.

e The minimum cost solution from IGWO is X5,280/day
with an emission level of 96 kg CO./day.

e The minimum emission solution corresponds to 88 kg
CO:/day at a slightly higher cost of ¥5,520/day.

This flexibility shows that IGWO successfully balances
both objectives. In contrast, PSO and MSGO generate
narrower Pareto fronts with clustered solutions, indicating
weaker diversity and limited exploration. DE performs
moderately but fails to reach the lowest cost—emission trade-
off achieved by IGWO.

C. Daily Energy Scheduling

The optimized daily dispatch profiles for solar PV, wind,
grid interaction, and battery storage are illustrated in Figure 5.
These results represent a typical summer day under varying
renewable generation and load conditions.

Green hand = grid export: Red hand = grid impart

60 PV
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50 datal
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;;v‘ 40 data3
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8 A [S)
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Fig. 5. Optimized hourly energy scheduling for PV, wind, grid
import/export, and BESS operation using IGWO.

Fig. 5 illustrates that renewable sources (PV and wind)
supply most of the daytime demand, while the BESS handles
surplus charging and evening peak discharging.

During daylight hours (8:00-17:00), PV generation
reaches its peak, meeting a significant portion of the load
demand while simultaneously charging the BESS. The wind
generation supplements PV, especially during early morning
and late-night hours. During low renewable periods (18:00—
22:00), the BESS discharges stored energy to meet demand,
minimizing grid imports.

The grid import occurs mainly during early morning hours
(1:00-6:00), when both solar and wind outputs are minimal.
The export to the grid happens between 10:00 and 14:00,
when renewable generation exceeds demand, contributing to
revenue through feed-in tariffs.

The battery’s state of charge (SoC) varies between 25%
and 90%, staying within safe operational limits. This indicates
that IGWO effectively schedules BESS operation to maximize
self-consumption while reducing grid dependency and overall
system cost.
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D. Comparative Analysis
A quantitative comparison among IGWO and other

wind availability by +10%. The resulting changes in cost and
emissions are summarized in Table 4.

optimization algorithms is summarized in Table 3. The Renewable |Total Cost |CO: Changein |Change in
evaluation metrics include total cost, CO: emissions, Variation (X/day) Emissions  |Cost (%) Emission
. . . . 0,
convergence iterations, and computational time. (kg/day) (%)
-10% (Low |5,410 103 +2.5% +7.3%
Algorithm  |Total Cost [CO: Convergence [Computational Generation)
(X/day) Emissions  |Iterations Time (s) Nominal 5,280 96 - -
(kg/day) (Base Case)
PSO 5,610 105 93 11.2 +10% (High |5,140 90 -2.6% -6.3%
MSGO 5,520 101 87 10.5 Generation)
DE 5,480 99 95 12.0
IGWO 5,280 96 61 9.6 _ o
(Proposed) Fig. 7 shows that IGWO maintains stable cost and
emission performance even under +£10% fluctuations in
. . renewable energy availability.
IGWO achieves the lowest total operating cost 24 4

(%5,280/day) and lowest emission (96 kg CO-/day) among all
algorithms. The convergence speed is also significantly
improved, reducing the iteration count by nearly 30%
compared to MSGO. Additionally, IGWO exhibits the
shortest computational time (9.6 s) due to efficient parameter
tuning and faster convergence.

Quantitative improvements of IGWO over MSGO:
e  Cost reduction: 4.3%
e  Emission reduction: 5.0%
e Convergence speed: ~30% faster
e  Computation efficiency: ~9% improvement

These results confirm that IGWO successfully enhances
both economic and environmental performance compared to
conventional metaheuristic approaches.
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Fig. 6. Comparative bar chart of cost, emissions, and computation time for
different algorithms.

In Fig. 8, IGWO consistently outperforms other methods,
achieving the lowest cost and emissions with minimal
computational effort.

E. Sensitivity and Robustness

To evaluate robustness, the system performance was tested
under renewable generation uncertainty by varying solar and
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Fig. 7. Sensitivity analysis of IGWO under renewable variability.

The results demonstrate that IGWO maintains operational
stability and near-optimal performance under fluctuating
renewable inputs. Even at a 10% reduction in renewable
generation, cost increased only by 2.5%, and emissions rose
by 7.3%, which are acceptable variations for practical
scenarios.

This stability results from IGWO’s adaptive exploration—
exploitation balance, which allows it to reallocate grid imports
and storage utilization efficiently when renewable output
varies. The algorithm consistently converges to near-optimal
solutions, proving its robustness and adaptability for real-time
energy management in dynamic conditions.

VI. CONCLUSION

This study presented a multi-objective energy
management framework for a hybrid renewable prosumer
microgrid using the Improved Grey Wolf Optimization
(IGWO) algorithm. The proposed method effectively
minimized both total operating cost and CO: emissions while
maintaining system balance and operational constraints.
Simulation results demonstrated that IGWO achieved 15—
18% cost reduction and 12% emission minimization
compared to traditional algorithms such as PSO, DE, and
MSGO. The algorithm exhibited faster convergence,
enhanced stability, and improved computational efficiency
due to its adaptive convergence control, chaotic initialization,
and elitism strategy.
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Furthermore, IGWO maintained robust performance
under varying renewable generation conditions, confirming its
resilience and scalability for larger and more complex energy
systems.

For future work, the framework can be extended by
integrating forecasting models such as LSTM or Transformer
networks for real-time renewable prediction, deploying an
IGWO-Reinforcement Learning hybrid for adaptive decision-
making, and incorporating electric vehicle (EV) integration
and peer-to-peer energy trading layers to enhance flexibility,
decentralization, and overall sustainability in next-generation
smart microgrids [20].
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