
Comparative Performance Evaluation of Energy-
Efficient and QoS-Aware Fog Scheduling Algorithm

Symah Bashir
School of Computer Applications

Lovely Professional University
symahbashir123@gmail.com

Amanpreet Singh
School of Computer Applications

Lovely Professional University
apsj24@gmail.com

Pankaj Rahi
School of Computer Applications

Lovely Professional University
dr.rahipankaj@gmail.com

Abstract—Fog computing is crucial for latency-sensitive, dis-
tributed applications. Efficient scheduling must balance QoS
especially latency with energy constraints on fog nodes. This
paper proposes a novel Whale Optimization Algorithm with
Convolutional Neural Network (WOAC) energy efficient and
QoS aware scheduling algorithm for fog environments. This
optimizes for minimizing the task execution delays and reducing
overall energy consumption. Through this simulation, WOAC
is compared against established baselines using metrics like
latency, energy, and deadline violations. Results consistently show
WOAC achieving significant reductions in both latency and
energy as compared to Artificial Bee Colony (ABC) and First-
Come First-Serve (FCFS). It also minimizes deadline violations
while maintaining high resource utilization. This proves WOAC
effectively balances real-time QoS and energy-efficient in fog
computing operations.

keywords: Whale Optimization, Convolutional Neural Net-
workFog computing, Energy efficient, QoS requirements.

1.INTRODUCTION

The relentless proliferation of Internet of Things (IoT)
devices and the surge in latency sensitive applications ranging
from autonomous vehicles and industrial automation to real
time healthcare and augmented reality have propelled fog
computing to the forefront as a critical complement to cloud
computing [1]. By decentralizing computation, storage, and
networking resources to the network edge, closer to data
sources, fog computing significantly reduces latency, mini-
mizes core network bandwidth consumption, and enhances
data privacy and responsiveness. Effective task scheduling
the process of mapping diverse computational tasks onto
geographically distributed and heterogeneous fog resources
is fundamental to realizing these benefits [2]. However, fog
environments present unique scheduling challenges due to
their inherent resource constraints (limited processing power,
energy, especially for battery-powered nodes), heterogeneity
(diverse node capabilities), geographical distribution, and dy-
namic workloads [3]. Energy efficiency and QoS-aware al-
gorithms prioritize meeting stringent application requirements
such as low latency, high throughput, reliability, and deadline
guarantees [4] [5]. Conversely, energy-efficient algorithms
focus on minimizing the power consumption of fog nodes to
reduce operational costs, extend hardware lifespan, and pro-
mote environmental sustainability [6]. Aggressively pursuing
one objective often detrimentally impacts the other minimizing

energy via techniques like task consolidation or node sleep
states can increase latency, while stringent QoS enforcement
may necessitate keeping more nodes active at higher frequen-
cies, consuming excessive energy [7] [8]. Consequently, a
multitude of scheduling algorithms have been proposed, em-
ploying various strategies (heuristic, meta-heuristic, machine
learning-based) and prioritizing different balances between
QoS and energy efficiency [9]. Yet, a critical gap exists:
the lack of a systematic, comprehensive, and comparative
evaluation framework to objectively assess how these diverse
algorithms perform across both energy and QoS dimensions
under realistic and varied fog scenarios. Understanding their
relative strengths, weaknesses, and the specific trade-offs they
engender is essential for researchers to advance the state-of-
the-art and for practitioners to make informed deployment
decisions [10]. This paper addresses this gap by presenting
a rigorous Comparative Performance Evaluation of prominent
Energy-Efficient and QoS-Aware of scheduling Algorithms.
We systematically analyze, implement, and benchmark a rep-
resentative selection of state-of-the-art algorithms using a com-
prehensive suite of performance metrics encompassing both
QoS parameters (e.g., latency, deadline miss rate) and energy
consumption. Through extensive simulations under diverse
workload and infrastructure conditions, this study aims to
provide crucial insights into the efficacy of different scheduling
approaches of energy-QoS trade-offs, and guide the selection
and future development of algorithm (WOA) for efficient and
sustainable fog computing deployments.

2. RELATED WORK

The critical role of task scheduling in optimizing fog com-
puting performance has spurred significant research, leading
to a plethora of algorithms targeting QoS guarantees, energy
efficiency, or a balance between both. This section reviews
key contributions, categorizing them based on their primary
optimization focus and highlighting the existing comparative
studies, while establishing the gap this work aims to fill.

2.1 QoS-Aware Scheduling Algorithms
Early and ongoing research heavily focuses on meeting

stringent application requirements. Latency/deadline Mini-
mization: Seminal works like [11] emphasized minimizing
service latency. Algorithms like Deadline-Aware Dynamic

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 9

PAGE NO: 234

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox



Task Scheduling (DADTS) [12] and Delay-Priority based
methods [13] explicitly prioritize tasks with tight deadlines.
Many leverage heuristics (e.g., Earliest Deadline First - EDF
variations, Min-Min, Max-Min) or meta-heuristics e.g Genetic
Algorithms (GAs), Particle Swarm Optimization (PSO) specif-
ically tuned to reduce response time and Deadline Miss Rates
(DMR) [14]. Throughput like approaches will proposed on
maximizing system throughput and ensuring fair load distri-
bution across fog nodes to prevent bottlenecks and improve
overall responsiveness, indirectly supporting QoS [15].

2.2 Energy-Efficient Scheduling Algorithms
Recognizing the resource constraints of fog nodes, espe-

cially battery-powered or remote devices, energy minimiza-
tion is a major thrust. Resource Consolidation and Dynamic
Voltage and Frequency Scaling (DVFS) techniques inspired by
cloud computing, such as Virtual Machine (VM) or container
consolidation, are adapted to reduce the number of active fog
nodes [16]. DVFS is frequently integrated to lower energy
consumption of active nodes during computation [17]. Bitam
et al. [15] purposes the algorithm for resource scheduling
where fog nodes goes into low-power sleep states and wake
them up based on demand prediction. Many studies used the
optimization for formulate the energy minimization within op-
timization framework using Linear Programming (LP), meta-
heuristics like Ant Colony Optimization (ACO) and Simulated
Annealing (SA) algorithms [18].

TABLE I
TAXONOMY OF FOG SCHEDULING ALGORITHM CATEGORIES

Ref Key Objectives Common
Techniques

Focus

[19] Minimize
Latency/Response
Time, Meet
Deadlines, Maximize
Throughput, Ensure
Reliability

EDF variants, Min-
Min/Max-Min, GAs,
PSO, Deadline-
priority heuristics

QoS-
Aware

[16] Minimize Energy
Consumption,
Maximize Resource
Utilization

VM/Container
Consolidation, DVFS,
Sleep/Wake, ACO,
SA

Energy-
Efficient

[20] Optimize Trade-
off between QoS
Guarantees and
Energy Savings

NSGA-II, MOPSO,
Weighted Sum, Fuzzy
Logic, RL/DNN/Q-
learning

Hybrid
QoS-
Energy

2.3 Limitations of Existing Comparative Studies
the limitations of existing comparative studies on fog com-

puting algorithms. One key limitation is the ”Intra-Category
Focus” where comparisons are limited to algorithms within
the same primary focus, such as only QoS-aware or only
energy-efficient algorithms. This fails to reveal how different
algorithm types perform against each other on the energy-QoS
trade-off [21]. Another limitation is the ”Narrow Metric Set”
where the evaluation focuses predominantly on metrics aligned
with one objective, such as latency/DMR or energy, neglecting
the other, providing an incomplete picture of overall perfor-
mance and trade-offs [22]. The ”Limited Algorithm Selection”

is another issue, where only a small or non-representative
subset of algorithms is evaluated, missing key state-of-the-art
approaches, limiting the generalizability of the results [23].
The ”Homogeneous Scenarios” limitation refers to testing
under a limited range of workload patterns, network sizes,
or resource heterogeneity, failing to demonstrate algorithm
robustness for diverse real-world fog environments [24].

Finally, the ”Inconsistent Evaluation Environments” where
algorithms are compared using different simulators, configu-
rations, or datasets hinders fair benchmarking, as the results
are not directly comparable [25].

3. FOG RESOURCE SCHEDULING: PROBLEM
FORMULATION

The Fig. 1 typically involves IoT nodes that generate tasks,
which are then processed by a set of fog nodes. The evaluation
would analyze various performance metrics, such as energy
consumption, latency, and throughput. Energy-efficient algo-
rithms aim to reduce power usage, potentially through methods
like DVFS. QoS-aware algorithms, on the other hand, focus on
ensuring that tasks are completed within their deadlines and
with acceptable latency. Power consumption is time-dependent
in such systems, which presents challenges in maintaining
independent decision sets across time slots. Therefore, we
propose a resource scheduling algorithm to find the optimal
matching of tasks and resources.

Fig. 1. Fog computing resource-scheduling architecture based on task
scheduling

Assume there are N IoT devices that produce a set of
tasks, and M available resources. The task set is denoted
as T = t1, t2, t3, . . . , tn, and the set of fog resources is
represented as R = r1, r2, r3, . . . , rm. Each IoT device gen-
erates tasks randomly, and it is assumed that the task arrivals
are independent and identically distributed. Over a long time
period, the task arrival pattern can be modeled using a Poisson
distribution. The resource monitor monitors the fog resource
pools, such as storage resources, computing resources, and
bandwidth resources. If the processing requests of the terminal
users to be processed are beyond the computing power of fog
computing, these tasks can be submitted by cloud servers for

2

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 9

PAGE NO: 235



additional processing when needed. Lastly, on the basis of a
particular scheduling strategy, resources and user requests are
matched to the corresponding, and the last scheduling outputs
will be returned to users.

To address the challenges of efficient task offloading and
resource distribution, we propose a novel scheme for Energy-
Efficient QoS Fog Evaluation (EEQFE), which leverages a
hybrid Whale Optimization Algorithm combined with a Con-
volutional Neural Network (WOAC). This approach is de-
signed to optimize system performance by minimizing energy
consumption while ensuring high Quality of Service (QoS) in
fog computing environments.

4. PROPOSED METHODOLOGY

This Proposed methodology WOAC combines the WOA and
CNN to optimize fog computing resource scheduling. This is a
novel energy-efficient and QoS-aware scheduling algorithm for
fog environments. This hybrid approach is designed to balance
QoS requirements, such as low latency and high throughput,
with energy consumption on fog nodes. The paper highlights
the novelty of WOAC by addressing a critical gap in existing
research the lack of a comprehensive comparative evaluation
framework for assessing diverse scheduling algorithms across
both energy and QoS dimensions.

This combines the strengths of the WOA and a CNN to
enhance resource scheduling. Unlike traditional approaches the
WOAC uses a CNN pre-trained on system state data to predict
resource availability or generate intelligent initial task assign-
ments. WOA also utilizes these CNN outputs to optimize
a multi-objective function aimed at minimizing latency and
energy consumption while maximizing throughput. By lever-
aging the CNN pattern recognition capabilities for informed
initialization and the WOA global search capabilities, WOAC
achieves a more refined, adaptive, and efficient solution than
single method algorithms.

4.1 Whale Optimization Algorithm with Convolutional Neu-
ral Network (WOAC)

Suppose we have a set of fog resources each represented by
a dimensional vector e.g., CPU, memory, bandwidth, latency.
And there is a set of tasks generated by edge devices:

X = {x1, x2, . . . , xn}, xi ∈ Rd

Each task xi is defined by features such as CPU require-
ment, memory, data size, deadline, and priority.

Let there be a set of fog nodes:

N = {n1, n2, . . . , nm}

The objective is to assign each task xi to a fog node nj such
that the overall cost function is minimized, subject to resource
and QoS constraints. To intelligently represent complex task
patterns, we first train a CNN based autoencoder on the task
dataset. The encoder maps each task vector xi into a latent
feature vector Fi ∈ Rh, where h < d.

Encoder: Eθ : Rd → Rh Decoder: Dϕ : Rh → Rd

Loss Function: The reconstruction loss function is defined
as:

Lrecon =
1

n

n∑
i=1

∥xi −Dϕ(Eθ(xi))∥2

After training, the decoder is discarded and the encoder is
used to generate feature vectors:

Fi = Eθ(xi)

These feature vectors are used to initialize the WOA popula-
tion with more task representation. This represents the bubble-
net feeding behavior of humpback whales. Each whale (search
agent) represents a possible task-to-node assignment vector.
Each whale Xi is a solution:

Xi = [a1, a2, . . . , an], ak ∈ {1, 2, . . . ,m}

indicating that task xk is assigned to node nak
.

WOA updates each solution using three strategies:
a. Encircling Prey (Exploitation):

D = |Č ·X∗ −Xi|
Xi(t+ 1) = X∗ − Ā ·D

where:
• Ā = 2ā · 7− ā
• Č = 2 · 7,7 ∈ [0, 1]d

b. Spiral Updating (Bubble-net):

Xi(t+ 1) = Ḋ · ebl · cos(2πl) +X∗

where:
• Ḋ = |X∗ −Xi|, b: spiral coefficient, l ∈ [−1, 1]
c. Random Search (Exploration):

Xi(t+ 1) = Xrand − Ā · |Č ·Xrand −Xi|

Executed when |Ā| ≥ 1

d. Fitness Function for Evaluation

The fitness of each whale Xi is determined by a multi-
objective function:

f(Xi) = w1 · L(Xi) + w2 ·E(Xi)

Where:
• L(Xi): Total latency of task execution and communica-

tion.
• E(Xi): Total energy consumed by all fog nodes.
• w1, w2, w3: Weights based on system priorities.
The optimization objective is to find the optimal solution

X∗ that minimizes the fitness function f(Xi):

X∗ = argmin
Xi

f(Xi)

X ∈ [1, 2, 3, . . . , n] position of i-th whale

X∗ is the optimal solution

f(Xi) Fitness value of solution Xi

3

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 9

PAGE NO: 236



4.2 Energy Efficient Model
However, the problem states that we assign tasks to fog

nodes. Therefore, we can model the energy for a fog node
as the energy consumed in processing the tasks assigned to it
and communicating with the edge devices. Since the fog node
receives data from edge devices, the energy for receiving the
data of task xk

Erx(k, j) = datak · P j
rx

The time to compute task xk on node nj is

tkcomp =
cpuk

fj

The energy computation during the time is

Ecomp(k, j) = P j
active · t

k
comp

Assuming the result size is proportional to the input data is

resultk = β · datak

where β is some factor. Then the transmission energy is

Etx(k, j) = resultk · P j
tx

The energy for task k on fog node j is:

Ek,j = datak · P j
rx + P j

active ·
cpuk

fj
+ β · datak · P j

tx

Then, the total energy for node j is the sum over all tasks
assigned to it and the total energy for the fog node nj is:

Ej =
∑
k∈T

[
datak · (P j

rx + β · P j
tx) + P j

active ·
cpuk

fj

]
Then, the total energy for the system (all fog nodes) is:

E(Xi) =

m∑
j=1

Ej =

m∑
j=1

∑
k∈T

[
datak · (PTx

j + β · PTx
j ) + P active

j +
cpuk

fj

]
Alternatively, we can write it as a sum over tasks. Let ak

be the node index to which task k is assigned. Then:

E(Xi) =

n∑
k=1

[
datak · (PTx

k + β · PTx
k ) + P active

k +
cpuk

fk

]
We introduced a parameter β for the result data size.

If we do not want to consider the result transmission, we
can set β = 0. Alternatively, if the result size is known,
we can adjust β accordingly. Also, note that the parameters
P rx
j , P tx

j , P active
j , fj are properties of the fog node nj and are

known. Therefore, the energy model is:

E(Xi) =

n∑
k=1

[
datak · (PTx

ak
+ β · PTx

ak
) + P active

ak
+

cpuk

fak

]

4.3 Latency Model
In the context of task offloading to fog computing environ-

ments, minimizing latency is a critical performance objective.
We define the end-to-end latency for a given task as the
sum of three distinct components: Transmission Latency (TL),
Processing Latency (PL), and Propagation Latency (PRL).
Each component accounts for different delays encountered by
a task from its initiation to its completion at a fog node.

4.3.1 Transmission Latency (TL): Transmission Latency
(TL) refers to the time required to transfer the data associated
with task k from the edge device to its assigned fog node j.
This delay is directly proportional to the size of the task’s data
and the number of tasks concurrently utilizing the bandwidth
of the fog node. We model TLk as follows:

TLk =
data sizek · |Tj |

BWj

where data sizek: Represents the data size of task k. |Tj |
denotes the number of tasks currently assigned to fog node
j. This term captures the shared nature of the fog node’s
bandwidth, implying that as more tasks are assigned to a
node, the effective bandwidth available per task decreases, thus
increasing transmission latency. Represents the total available
bandwidth of fog node j.

4.3.2 Processing Latency (PL): Processing Latency (PL)
quantifies the time taken for fog node j to execute task k.
This latency is contingent upon the computational demands
of the task and the processing capacity of the assigned fog
node. Similar to transmission latency, the processing resources
are shared among all tasks assigned to a specific node. The
formula for PLk is given by:

PLk =
cpuk · |Tj |

cpuj

where cpuk refers to the CPU requirement of task k. |Tj |:
As before, represents the number of tasks assigned to fog node
j. This factor highlights the impact of load on the processing
capabilities, where increased load leads to longer processing
times per task. cpuj : represents the total CPU capacity of fog
node j.

4.3.3 Propagation Latency (PRL): Propagation Latency
(Propk) accounts for the fixed network delay experienced
by data signals traveling between the edge device and the
fog node. This component typically depends on the physical
distance and the transmission medium characteristics. For
simplicity, we assume this is an inherent feature of the fog
node’s network connectivity. It is defined as:

Propk = latencyj

where latencyj Represents the inherent fixed propagation
delay associated with fog node j. This value can be pre-
determined based on the geographical location and network
infrastructure of the fog node.

Therefore the total latency Latencyk of k tasks is the sum
of its transmission, processing, and propagation latencies:

4

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 9

PAGE NO: 237



Latencyk = TLk + PLk + PRLk

Therefore the fitness function is to optimize the problems of
minimize overall system latency, a fitness function is employed
to evaluate the quality of a given task assignment strategy. Our
objective is to minimize the sum of latencies for all tasks k
within the system. For a given assignment Xi (representing a
specific allocation of n tasks to available fog nodes), the total
latency, L(Xi), is defined as:

L(Xi) =

n∑
k=1

(
data sizek · |Tj |

BWj
+

cpuk · |Tj |
cpuj

+ latencyj

)
The inclusion of the term |Tj | in both the transmission and

processing latency components serves as a dynamic penalty for
overloaded nodes. This crucial aspect of the fitness function
promotes effective load balancing across the available fog
nodes. By lower the latency contribution of tasks assigned to
heavily utilized nodes, the optimization algorithm is guided
towards distributing tasks more evenly, thereby preventing
bottlenecks and improving overall system performance.

5. ALGORITHM DESIGN

Algorithm 1 Resource Scheduling Algorithm Based on
WOAC
Require: Resource set {rs1, rs2, . . . , rsm}, task set
{ta1, ta2, . . . , tan}.

max itr Tmax, WOA size N , CNN prediction proba-
bility Pcnn, pre-trained CNN model

Ensure: Best energy consumption Ebest, latency Lbest, and
QoS score Qbest

1: Initialize whale population {Xi}Ni=1

2: Set Ebest ←∞, Lbest ←∞, Qbest ← 0, t← 0
3: while t < Tmax do
4: a← 2

(
1− t

Tmax

)
5: for each whale Xi do
6: Update Xi using WOA position update rules
7: if rand < Pcnn then
8: Ei ← CNN Predict Energy(Xi)
9: Li ← CNN Predict Latency(Xi)

10: Qi ← CNN Predict QoS(Xi)
11: else
12: (Ei, Li, Qi)← Simulate(Xi)
13: end if
14: if Ei < Ebest and Li < Lbest and Qi > Qbest then
15: Ebest ← Ei, Lbest ← Li, Qbest ← Qi

16: Xbest ← Xi

17: end if
18: end for
19: t← t+ 1
20: end while
21: return Ebest, Lbest, Qbest

5.1 Algorithm Performance Analysis

The efficacy of our Proposed WOAC for resource schedul-
ing is shaped by several core elements. The computational cost
scales with the total iterations (Tmax) and the population count
(N ), as each step requires either a swift CNN inference or a
potentially costly simulation. Convergence speed benefits from
the WOA inherent search capabilities, amplified by the CNN
predictive guidance. However, the achieved solution improve-
ment in energy, latency, and QoS hinges critically on both the
WOA exploration and the CNN precision; a high Pcnn with an
imprecise CNN model can degrade outcomes. Thus, the pre-
trained CNN quality is paramount, as an inadequately trained
model will misdirect the optimization. The Simulate(Xi)
function, when invoked, contributes notable computational
overhead. Furthermore, performance is sensitive to tuning
parameters like Tmax, N , and Pcnn. Scalability depends on
the CNN and simulation complexity relative to problem size.
While simulation validation can bolster robustness, an over-
reliance on a non-robust CNN especially with high Pcnn
exposes the algorithm to vulnerabilities in novel situations.

TABLE II
COMPARISON OF ALGORITHMS BASED ON NUMBER OF TASKS, TS

ENERGY IN(J), AND TT ENERGY(J))

Algorithm Number of Tasks TS Energy(J) TT Energy(J)

WOAC

100
200
300
400
500

210.57
353.85
581.82
805.09
939.62

139.97
265.90
426.80
601.19
749.56

ABC

100
200
300
400
500

247.90
469.89
674.08
939.06
1183.23

171.96
360.05
555.44
728.60
942.92

FCFS

100
200
300
400
500

283.20
540.12
770.10
1091.11
1287.23

203.94
400.00
611.11
776.34
989.21

The table II presents the performance comparison between
two distinct optimization algorithms, WOAC, FCFS and ABC
specifically in the context of energy consumption metrics for
varying computational loads. The number of tasks serves as
a proxy for the computational workload, ranging from 100 to
500 tasks where the fix same fog nodes 50. This allows for
an analysis of how each algorithm scales under increasing de-
mands. The primary performance indicators are Total System
(TS) energy and Total Tasks (TT) energy consumption in Jules
both reflecting different aspects of energy expenditure during
task execution.

The Fig 2. represents the total energy consumption of
tasks in (J/sec). It compares the WOAC, FCFS, and ABC
algorithms’ energy use as task count increases (100-500).
While both consume more energy with more tasks, WOA
consistently shows lower total consumption than ABC across
all loads, demonstrating greater energy efficiency.

5

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 9

PAGE NO: 238



Fig. 2. Total energy consumption of tasks (TEC).

Fig 3. shows the TS energy across three algorithms is that as
the number of tasks grows, both types of energy consumption
rise proportionally, indicating that higher workloads demand
more energy. Furthermore, it shows the comparison of results
are in ABC, FCFS and our proposed approach. It shows
the values of ABC consistently exhibits higher than WOAC.
Therefore, WOAC demonstrates better energy efficiency than
ABC under the evaluated conditions.

Fig. 3. Comparision of TS energy in all approaches.

TABLE III
COMPARISON OF ALGORITHMS BASED ON NUMBER OF TASKS TOTAL

LATENCY, PL, AND TL

Algorithm Tasks Total Latency (TL) PL TL

WOA

100
150
200
250
300

65.5
96.2

132.4
174.6
192.3

27.9
40.1
53.1
76.7
85.3

37.3
56.1
69.2
90.8

107.0

ABC

100
150
200
250
300

72.4
109.6
146.6
190.8
222.5

34.3
52.3

70.25
94.3

111.0

38.8
57.5
74.6
96.5

114.4

FCFS

100
150
200
250
300

79.25
113.92
154.10
200.45
232.40

35.5
53.5
72.4

95.21
110.6

43.5
59.5

80.23
105.69
121.4

The above Table III shows the Comparison of WOAC,
ABC and FCFS algorithms based on latencies. It details TL,
PL and TL for task numbers ranging from 100 to 300. For
each task load, all algorithms latency values are provided

across these three categories. The data consistently indicates
that WOAC achieves lower latency values in all measured
categories compared to ABC and FCFS.

Fig. 4. Comparison of TL in both approaches

In Fig 4. we define the correlation between the volume of
tasks and TL for the WOAC, ABC and FCFS algorithms.
When the number of task count rises, the TL increases for both
approaches. Nevertheless, the WOAC algorithm consistently
demonstrates lower latency across the entire spectrum of
task loads. This indicates that WOAC is more effective for
data transmission in computational environments handling a
substantial number of tasks.

In Fig 5 we define clearly the WOAC algorithm is superior
in processing efficiency as compared to ABC and FCFS.
Despite both algorithms experiencing increased latency with
more tasks, WOAC consistently maintains significantly lower
processing delays. This crucial benefit makes WOAC highly
effective for rapid task execution, particularly in scenarios
involving a large number of tasks.

Fig. 5. Comparison of PL in both approaches

Fig 6 We shows the graph total latency performance of the
WOAC and ABC across varying task loads. Both algorithms
exhibit increased latency with higher task counts; however,
WOAC consistently achieves significantly lower overall de-
lays. This result empirically demonstrates WOAC superior
efficiency and enhanced scalability in managing substantial
workloads. The reduced latency provided by WOAC is partic-
ularly critical for time-sensitive applications, such as real-time
systems, enabling improved system responsiveness, enhanced
user experience, and more effective resource utilization.

6

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 9

PAGE NO: 239



Fig. 6. Comparison of Total Latency in both approaches

TABLE IV
COMPARISON OF WOAC AND ABC ALGORITHMS BASED ON

THROUGHPUT AND DEADLINE MEETING TASKS

Algorithm Fog Nodes Throughput Task Deadline

WOAC

50
100
150
200

95.9
141.9
155.5
194.0

94.3
139.8
155.0
194.0

ABC

50
100
150
200

78.78
118.80
135.59
150.88

76.39
117.61
133.56
150.88

FCFS

50
100
150
200

61.77
110.85
115.4
129.51

61.9
109.1

108.67
127.78

The Fig 7. shows a comparison of throughput evaluation
contrasting the WOAC and ABC algorithms. The fog nodes
are increasing The WOAC algorithm consistently outperforms
the ABC algorithm, with a maximum throughput of 194.0 at
200 fog nodes compared to 150.88 for the ABC are shown
in Table IV. This comparison underscores WOAC enhanced
throughput capabilities, positioning it as advantageous for
edge-based applications demanding high-performance data
processing.

Fig. 7. Comparison of Throughput

Fig 8. compares deadline compliance between WOAC and
ABC, FCFS algorithms as fog nodes scale. WOAC consis-
tently achieves higher compliance, peaking at 194.0 tasks
meeting deadlines at 200 node as compared ABC and FCFS
only 150.88, and 127.78. This clears the WOAC is effective
for real-time applications where meeting deadlines is critical.

Fig. 8. Comparison of tasks meeting deadline

.

6. CONCLUSIONS

This paper presents a comprehensive comparative perfor-
mance evaluation of leading energy-efficient and QoS-aware
scheduling algorithms in fog computing environments. The
results reveal that the proposed hybrid WOAC algorithm
consistently outperforms the ABC and FCFS algorithm across
key metrics, including energy efficiency, latency reduction,
throughput, and deadline adherence. Specifically, WOAC
achieves superior energy savings and enables faster data pro-
cessing and more efficient communication, making it particu-
larly well-suited for time-sensitive applications. Additionally,
WOAC delivers significantly higher task processing rates, with
the performance advantage becoming more pronounced as
the number of fog nodes increases. However, it maintains an
almost perfect correlation between overall throughput and on-
time task completion. These findings highlight WOAC as a
highly scalable and dependable solution for fog computing
scenarios that demand both high throughput and strict deadline
compliance.

REFERENCES

[1] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application manage-
ment in fog computing environments: A taxonomy, review and future
directions,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1–43,
2020.

[2] G. Li, Y. Liu, J. Wu, D. Lin, and S. Zhao, “Methods of resource
scheduling based on optimized fuzzy clustering in fog computing,”
Sensors, vol. 19, no. 9, p. 2122, 2019.

[3] G. Goel and R. Tiwari, “Resource scheduling techniques for optimal
quality of service in fog computing environment: a review,” Wireless
Personal Communications, vol. 131, no. 1, pp. 141–164, 2023.

[4] A. Rahimikhanghah, M. Tajkey, B. Rezazadeh, and A. M. Rahmani, “Re-
source scheduling methods in cloud and fog computing environments:
a systematic literature review,” Cluster Computing, vol. 25, no. 2, pp.
911–945, 2022.

[5] C. Huang, H. Wang, L. Zeng, and T. Li, “Resource scheduling and
energy consumption optimization based on lyapunov optimization in
fog computing,” Sensors, vol. 22, no. 9, p. 3527, 2022.

[6] F. Murtaza, A. Akhunzada, S. ul Islam, J. Boudjadar, and R. Buyya,
“Qos-aware service provisioning in fog computing,” Journal of Network
and Computer Applications, vol. 165, p. 102674, 2020.

[7] N. Potu, C. Jatoth, and P. Parvataneni, “Optimizing resource scheduling
based on extended particle swarm optimization in fog computing en-
vironments,” Concurrency and Computation: Practice and Experience,
vol. 33, no. 23, p. e6163, 2021.

7

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 9

PAGE NO: 240



[8] M. Iyapparaja, N. K. Alshammari, M. S. Kumar, S. Krishnan, and C. L.
Chowdhary, “Efficient resource allocation in fog computing using qtcs
model.” Computers, Materials & Continua, vol. 70, no. 2, 2022.

[9] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R. Buyya, “Resource
allocation and task scheduling in fog computing and internet of every-
thing environments: A taxonomy, review, and future directions,” ACM
Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1–38, 2022.

[10] C. Yin, Q. Fang, H. Li, Y. Peng, X. Xu, and D. Tang, “An optimized
resource scheduling algorithm based on ga and aco algorithm in fog
computing,” The Journal of Supercomputing, vol. 80, no. 3, pp. 4248–
4285, 2024.

[11] X. Li, Z. Zang, F. Shen, and Y. Sun, “Task offloading scheme based on
improved contract net protocol and beetle antennae search algorithm in
fog computing networks,” Mobile Networks and Applications, vol. 25,
no. 6, pp. 2517–2526, 2020.

[12] M. A. Rahman, M. S. Hossain, E. Hassanain, and G. Muhammad,
“Semantic multimedia fog computing and iot environment: sustainability
perspective,” IEEE Communications Magazine, vol. 56, no. 5, pp. 80–87,
2018.

[13] Y. Kalyani and R. Collier, “A systematic survey on the role of cloud,
fog, and edge computing combination in smart agriculture,” Sensors,
vol. 21, no. 17, p. 5922, 2021.

[14] X. Huang, W. Fan, Q. Chen, and J. Zhang, “Energy-efficient resource
allocation in fog computing networks with the candidate mechanism,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8502–8512, 2020.

[15] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling
optimization based on bees swarm,” Enterprise Information Systems,
vol. 12, no. 4, pp. 373–397, 2018.

[16] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” IEEE internet of things journal, vol. 3, no. 6, pp. 1171–
1181, 2016.

[17] M. Mukherjee, S. Kumar, C. X. Mavromoustakis, G. Mastorakis,
R. Matam, V. Kumar, and Q. Zhang, “Latency-driven parallel task data
offloading in fog computing networks for industrial applications,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6050–6058,
2019.

[18] H. Sabireen and V. Neelanarayanan, “A review on fog computing:
Architecture, fog with iot, algorithms and research challenges,” Ict
Express, vol. 7, no. 2, pp. 162–176, 2021.

[19] Y. Liu, X. Zeng, Z. He, and Q. Zou, “Inferring microrna-disease
associations by random walk on a heterogeneous network with multiple
data sources,” IEEE/ACM transactions on computational biology and
bioinformatics, vol. 14, no. 4, pp. 905–915, 2016.

[20] M. Haghi Kashani, A. M. Rahmani, and N. Jafari Navimipour, “Quality
of service-aware approaches in fog computing,” International Journal
of Communication Systems, vol. 33, no. 8, p. e4340, 2020.

[21] G. Caiza, M. Saeteros, W. Oñate, and M. V. Garcia, “Fog computing
at industrial level, architecture, latency, energy, and security: A review,”
Heliyon, vol. 6, no. 4, 2020.

[22] Z. Lin, L. Lu, J. Shuai, H. Zhao, and A. Shahidinejad, “An efficient
and autonomous planning scheme for deploying iot services in fog
computing: A metaheuristic-based approach,” IEEE Transactions on
Computational Social Systems, vol. 11, no. 1, pp. 1415–1429, 2023.

[23] C. Tameling, S. Stoldt, T. Stephan, J. Naas, S. Jakobs, and A. Munk,
“Colocalization for super-resolution microscopy via optimal transport,”
Nature computational science, vol. 1, no. 3, pp. 199–211, 2021.

[24] A. Brogi, S. Forti, and A. Ibrahim, “Optimising qos-assurance, resource
usage and cost of fog application deployments,” in International con-
ference on cloud computing and services science. Springer, 2018, pp.
168–189.

[25] S. Sonkamble, S. Chandra, and P. R. Pujari, “Application of airborne
and ground geophysics to unravel the hydrogeological complexity of the
deccan basalts in central india,” Hydrogeology Journal, vol. 30, no. 7,
pp. 2097–2116, 2022.

8

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 9

PAGE NO: 241


