Journal Of Technology || Issn N0:1012-3407 || Vol 15 Issue 9

Comparative Performance Evaluation of Energy-
Efficient and QoS-Aware Fog Scheduling Algorithm

Symah Bashir
School of Computer Applications
Lovely Professional University

Abstract—Fog computing is crucial for latency-sensitive, dis-
tributed applications. Efficient scheduling must balance QoS
especially latency with energy constraints on fog nodes. This
paper proposes a novel Whale Optimization Algorithm with
Convolutional Neural Network (WOAC) energy efficient and
QoS aware scheduling algorithm for fog environments. This
optimizes for minimizing the task execution delays and reducing
overall energy consumption. Through this simulation, WOAC
is compared against established baselines using metrics like
latency, energy, and deadline violations. Results consistently show
WOAC achieving significant reductions in both latency and
energy as compared to Artificial Bee Colony (ABC) and First-
Come First-Serve (FCFS). It also minimizes deadline violations
while maintaining high resource utilization. This proves WOAC
effectively balances real-time QoS and energy-efficient in fog
computing operations.

keywords: Whale Optimization, Convolutional Neural Net-
workFog computing, Energy efficient, QoS requirements.

1.INTRODUCTION

The relentless proliferation of Internet of Things (IoT)
devices and the surge in latency sensitive applications ranging
from autonomous vehicles and industrial automation to real
time healthcare and augmented reality have propelled fog
computing to the forefront as a critical complement to cloud
computing [1]. By decentralizing computation, storage, and
networking resources to the network edge, closer to data
sources, fog computing significantly reduces latency, mini-
mizes core network bandwidth consumption, and enhances
data privacy and responsiveness. Effective task scheduling
the process of mapping diverse computational tasks onto
geographically distributed and heterogeneous fog resources
is fundamental to realizing these benefits [2]. However, fog
environments present unique scheduling challenges due to
their inherent resource constraints (limited processing power,
energy, especially for battery-powered nodes), heterogeneity
(diverse node capabilities), geographical distribution, and dy-
namic workloads [3]. Energy efficiency and QoS-aware al-
gorithms prioritize meeting stringent application requirements
such as low latency, high throughput, reliability, and deadline
guarantees [4] [5]. Conversely, energy-efficient algorithms
focus on minimizing the power consumption of fog nodes to
reduce operational costs, extend hardware lifespan, and pro-
mote environmental sustainability [6]. Aggressively pursuing
one objective often detrimentally impacts the other minimizing

Amanpreet Singh
School of Computer Applications
Lovely Professional University

Pankaj Rahi
School of Computer Applications
Lovely Professional University

energy via techniques like task consolidation or node sleep
states can increase latency, while stringent QoS enforcement
may necessitate keeping more nodes active at higher frequen-
cies, consuming excessive energy [7] [8]. Consequently, a
multitude of scheduling algorithms have been proposed, em-
ploying various strategies (heuristic, meta-heuristic, machine
learning-based) and prioritizing different balances between
QoS and energy efficiency [9]. Yet, a critical gap exists:
the lack of a systematic, comprehensive, and comparative
evaluation framework to objectively assess how these diverse
algorithms perform across both energy and QoS dimensions
under realistic and varied fog scenarios. Understanding their
relative strengths, weaknesses, and the specific trade-offs they
engender is essential for researchers to advance the state-of-
the-art and for practitioners to make informed deployment
decisions [10]. This paper addresses this gap by presenting
a rigorous Comparative Performance Evaluation of prominent
Energy-Efficient and QoS-Aware of scheduling Algorithms.
We systematically analyze, implement, and benchmark a rep-
resentative selection of state-of-the-art algorithms using a com-
prehensive suite of performance metrics encompassing both
QoS parameters (e.g., latency, deadline miss rate) and energy
consumption. Through extensive simulations under diverse
workload and infrastructure conditions, this study aims to
provide crucial insights into the efficacy of different scheduling
approaches of energy-QoS trade-offs, and guide the selection
and future development of algorithm (WOA) for efficient and
sustainable fog computing deployments.

2. RELATED WORK

The critical role of task scheduling in optimizing fog com-
puting performance has spurred significant research, leading
to a plethora of algorithms targeting QoS guarantees, energy
efficiency, or a balance between both. This section reviews
key contributions, categorizing them based on their primary
optimization focus and highlighting the existing comparative
studies, while establishing the gap this work aims to fill.

2.1 QoS-Aware Scheduling Algorithms

Early and ongoing research heavily focuses on meeting
stringent application requirements. Latency/deadline Mini-
mization: Seminal works like [11] emphasized minimizing
service latency. Algorithms like Deadline-Aware Dynamic

PAGE NO: 234

Tanoy
Textbox

Tanoy
Textbox

Tanoy
Textbox

Journal Of Technology || Issn N0:1012-3407 || Vol 15 Issue 9

Task Scheduling (DADTS) [12] and Delay-Priority based
methods [13] explicitly prioritize tasks with tight deadlines.
Many leverage heuristics (e.g., Earliest Deadline First - EDF
variations, Min-Min, Max-Min) or meta-heuristics e.g Genetic
Algorithms (GAs), Particle Swarm Optimization (PSO) specif-
ically tuned to reduce response time and Deadline Miss Rates
(DMR) [14]. Throughput like approaches will proposed on
maximizing system throughput and ensuring fair load distri-
bution across fog nodes to prevent bottlenecks and improve
overall responsiveness, indirectly supporting QoS [15].

2.2 Energy-Efficient Scheduling Algorithms

Recognizing the resource constraints of fog nodes, espe-
cially battery-powered or remote devices, energy minimiza-
tion is a major thrust. Resource Consolidation and Dynamic
Voltage and Frequency Scaling (DVFES) techniques inspired by
cloud computing, such as Virtual Machine (VM) or container
consolidation, are adapted to reduce the number of active fog
nodes [16]. DVES is frequently integrated to lower energy
consumption of active nodes during computation [17]. Bitam
et al. [15] purposes the algorithm for resource scheduling
where fog nodes goes into low-power sleep states and wake
them up based on demand prediction. Many studies used the
optimization for formulate the energy minimization within op-
timization framework using Linear Programming (LP), meta-
heuristics like Ant Colony Optimization (ACO) and Simulated
Annealing (SA) algorithms [18].

TABLE I
TAXONOMY OF FOG SCHEDULING ALGORITHM CATEGORIES
Ref Key Objectives Common Focus
Techniques
[19] Minimize EDF variants, Min- | QoS-
Latency/Response Min/Max-Min, GAs, | Aware
Time, Meet | PSO, Deadline-
Deadlines, Maximize | priority heuristics
Throughput, Ensure
Reliability
[16] Minimize Energy | VM/Container Energy-
Consumption, Consolidation, DVFES, | Efficient
Maximize Resource | Sleep/Wake, ACO,
Utilization SA
[20] Optimize Trade- | NSGA-II, MOPSO, | Hybrid
off between QoS | Weighted Sum, Fuzzy | QoS-
Guarantees and | Logic, RL/DNN/Q- | Energy
Energy Savings learning

2.3 Limitations of Existing Comparative Studies

the limitations of existing comparative studies on fog com-
puting algorithms. One key limitation is the “Intra-Category
Focus” where comparisons are limited to algorithms within
the same primary focus, such as only QoS-aware or only
energy-efficient algorithms. This fails to reveal how different
algorithm types perform against each other on the energy-QoS
trade-off [21]. Another limitation is the “Narrow Metric Set”
where the evaluation focuses predominantly on metrics aligned
with one objective, such as latency/DMR or energy, neglecting
the other, providing an incomplete picture of overall perfor-
mance and trade-offs [22]. The “Limited Algorithm Selection”

is another issue, where only a small or non-representative
subset of algorithms is evaluated, missing key state-of-the-art
approaches, limiting the generalizability of the results [23].
The "Homogeneous Scenarios” limitation refers to testing
under a limited range of workload patterns, network sizes,
or resource heterogeneity, failing to demonstrate algorithm
robustness for diverse real-world fog environments [24].

Finally, the “Inconsistent Evaluation Environments” where
algorithms are compared using different simulators, configu-
rations, or datasets hinders fair benchmarking, as the results
are not directly comparable [25].

3. FOG RESOURCE SCHEDULING: PROBLEM
FORMULATION

The Fig. 1 typically involves IoT nodes that generate tasks,
which are then processed by a set of fog nodes. The evaluation
would analyze various performance metrics, such as energy
consumption, latency, and throughput. Energy-efficient algo-
rithms aim to reduce power usage, potentially through methods
like DVFS. QoS-aware algorithms, on the other hand, focus on
ensuring that tasks are completed within their deadlines and
with acceptable latency. Power consumption is time-dependent
in such systems, which presents challenges in maintaining
independent decision sets across time slots. Therefore, we
propose a resource scheduling algorithm to find the optimal
matching of tasks and resources.

Cloud Edge layer

= 4
G 88

Compoutiatianal resources
Cloud/Edge layer =

=
)
]

‘Lfiiiiﬁ:ﬁﬂgjﬁ::fT"‘

} i]
: v i 1

QoS !
requirement " uler —* Scheduling 1
— i :

Set of tasks T1, T2,.., T,]

Fig. 1. Fog computing resource-scheduling architecture based on task
scheduling

Assume there are N IoT devices that produce a set of
tasks, and M available resources. The task set is denoted
as T = ty,t9,t3,...,t,, and the set of fog resources is
represented as R = ry,7r2,73,...,7,. Each IoT device gen-
erates tasks randomly, and it is assumed that the task arrivals
are independent and identically distributed. Over a long time
period, the task arrival pattern can be modeled using a Poisson
distribution. The resource monitor monitors the fog resource
pools, such as storage resources, computing resources, and
bandwidth resources. If the processing requests of the terminal
users to be processed are beyond the computing power of fog
computing, these tasks can be submitted by cloud servers for

PAGE KO: 235

Journal Of Technology || Issn N0:1012-3407 || Vol 15 Issue 9

additional processing when needed. Lastly, on the basis of a
particular scheduling strategy, resources and user requests are
matched to the corresponding, and the last scheduling outputs
will be returned to users.

To address the challenges of efficient task offloading and
resource distribution, we propose a novel scheme for Energy-
Efficient QoS Fog Evaluation (EEQFE), which leverages a
hybrid Whale Optimization Algorithm combined with a Con-
volutional Neural Network (WOAC). This approach is de-
signed to optimize system performance by minimizing energy
consumption while ensuring high Quality of Service (QoS) in
fog computing environments.

4. PROPOSED METHODOLOGY

This Proposed methodology WOAC combines the WOA and
CNN to optimize fog computing resource scheduling. This is a
novel energy-efficient and QoS-aware scheduling algorithm for
fog environments. This hybrid approach is designed to balance
QoS requirements, such as low latency and high throughput,
with energy consumption on fog nodes. The paper highlights
the novelty of WOAC by addressing a critical gap in existing
research the lack of a comprehensive comparative evaluation
framework for assessing diverse scheduling algorithms across
both energy and QoS dimensions.

This combines the strengths of the WOA and a CNN to
enhance resource scheduling. Unlike traditional approaches the
WOAC uses a CNN pre-trained on system state data to predict
resource availability or generate intelligent initial task assign-
ments. WOA also utilizes these CNN outputs to optimize
a multi-objective function aimed at minimizing latency and
energy consumption while maximizing throughput. By lever-
aging the CNN pattern recognition capabilities for informed
initialization and the WOA global search capabilities, WOAC
achieves a more refined, adaptive, and efficient solution than
single method algorithms.

4.1 Whale Optimization Algorithm with Convolutional Neu-
ral Network (WOAC)

Suppose we have a set of fog resources each represented by
a dimensional vector e.g., CPU, memory, bandwidth, latency.
And there is a set of tasks generated by edge devices:
x; € Rd

X ={x1,x9,...,2,},

Each task z; is defined by features such as CPU require-
ment, memory, data size, deadline, and priority.
Let there be a set of fog nodes:

N ={ny,na,...,nm}

The objective is to assign each task z; to a fog node n; such
that the overall cost function is minimized, subject to resource
and QoS constraints. To intelligently represent complex task
patterns, we first train a CNN based autoencoder on the task
dataset. The encoder maps each task vector x; into a latent
feature vector F; € R", where h < d.

Encoder: Fp : RY — R" Decoder: Dy : R" — R4

Loss Function: The reconstruction loss function is defined
as: Lo
Liecon = — z; — Dy(Fo(x; 2
2 2 s = Do Ep(ai)]
After training, the decoder is discarded and the encoder is
used to generate feature vectors:

F; = Eg(z;)

These feature vectors are used to initialize the WOA popula-
tion with more task representation. This represents the bubble-
net feeding behavior of humpback whales. Each whale (search
agent) represents a possible task-to-node assignment vector.
Each whale X is a solution:

Xi:[al,&g,...,an], ake{l,Q,...,m}

indicating that task xj, is assigned to node ng, .
WOA updates each solution using three strategies:
a. Encircling Prey (Exploitation):

D=|C -X* - X|
X;(t+1)=X*~A-D

where:

cA-2.7-3

e C=2.7,7¢[0,1)¢

b. Spiral Updating (Bubble-net):

X;(t+1) =D e cos(2nl) + X*

where:

e D = |X* — X;|, b: spiral coefficient, 1 € [—1,1]

c. Random Search (Exploration):

Xl(t —+ 1) = Xrand — A . |C . Xrand - Xz‘

Executed when |A| > 1

d. Fitness Function for Evaluation
The fitness of each whale X; is determined by a multi-
objective function:

Where:

o L(X;): Total latency of task execution and communica-
tion.
« E(X;): Total energy consumed by all fog nodes.
e W1, Wy, ws: Weights based on system priorities.
The optimization objective is to find the optimal solution
X* that minimizes the fitness function f(X;):

X* = arg n}l{in f(X;)
X €[1,2,3,...,n] position of i-th whale
X™ is the optimal solution

f(Xi)

Fitness value of solution X;

PAGE RIO: 236

Journal Of Technology || Issn N0:1012-3407 || Vol 15 Issue 9

4.2 Energy Efficient Model

However, the problem states that we assign tasks to fog
nodes. Therefore, we can model the energy for a fog node
as the energy consumed in processing the tasks assigned to it
and communicating with the edge devices. Since the fog node
receives data from edge devices, the energy for receiving the
data of task xy,

E,.(k,j) = datay, - P?,
The time to compute task z) on node n; is

kP
comp]
fi

The energy computation during the time is

—pi 4k

active “comp

Ecomp(ka J)

Assuming the result size is proportional to the input data is

result, = (3 - datay,
where [is some factor. Then the transmission energy is
Ew(k, j) = resulty, - Pg;

The energy for task k on fog node j is:

Ek’j = datay, - RJX + Pj PUk + B - datay, - _Pg(

active fi

J

Then, the total energy for node j is the sum over all tasks
assigned to it and the total energy for the fog node n; is:

Ei=Y

{datak (Pi4g-Py+pi . Pk
keT

active f i
J

Then, the total energy for the system (all fog nodes) is:

4.3 Latency Model

In the context of task offloading to fog computing environ-
ments, minimizing latency is a critical performance objective.
We define the end-to-end latency for a given task as the
sum of three distinct components: Transmission Latency (TL),
Processing Latency (PL), and Propagation Latency (PRL).
Each component accounts for different delays encountered by
a task from its initiation to its completion at a fog node.

4.3.1 Transmission Latency (TL): Transmission Latency
(T'L) refers to the time required to transfer the data associated
with task k from the edge device to its assigned fog node j.
This delay is directly proportional to the size of the task’s data
and the number of tasks concurrently utilizing the bandwidth
of the fog node. We model 7L, as follows:

_ data_sizey, - |7
B BW,

where data_size;: Represents the data size of task k. |7}
denotes the number of tasks currently assigned to fog node
j. This term captures the shared nature of the fog node’s
bandwidth, implying that as more tasks are assigned to a
node, the effective bandwidth available per task decreases, thus
increasing transmission latency. Represents the total available
bandwidth of fog node j.

4.3.2 Processing Latency (PL): Processing Latency (PL)
quantifies the time taken for fog node j to execute task k.
This latency is contingent upon the computational demands
of the task and the processing capacity of the assigned fog
node. Similar to transmission latency, the processing resources
are shared among all tasks assigned to a specific node. The
formula for PLj, is given by:

TLy

_cpu, - |7y

cpu;

PLy

where cpu,, refers to the CPU requirement of task k. |T}:
As before, represents the number of tasks assigned to fog node
7. This factor highlights the impact of load on the processing

m m
B(X;) = ZEj _ Z Z {datak . (Pij 18- psz) T PJ@zdz‘neCé}p&@ﬁhi s, where increased load leads to longer processing
j=1

j=1keT

Alternatively, we can write it as a sum over tasks. Let ay
be the node index to which task k is assigned. Then:

E(X;) =)

Cpuk]
k=1

Jr

We introduced a parameter 5 for the result data size.
If we do not want to consider the result transmission, we
can set § = 0. Alternatively, if the result size is known,
we can adjust 8 accordingly. Also, note that the parameters
P, Pj‘?m, P;‘C‘iv"’, f; are properties of the fog node n; and are
known. Therefore, the energy model is:

{dat“k (BT B P + PR+

CpUE

Jax

E(X;) =)

{datak . (Pan +8- paTkr) + P;kctive +
k=1

times/per] task. cpu;: represents the total CPU capacity of fog
node j.

4.3.3 Propagation Latency (PRL): Propagation Latency
(Propy) accounts for the fixed network delay experienced
by data signals traveling between the edge device and the
fog node. This component typically depends on the physical
distance and the transmission medium characteristics. For
simplicity, we assume this is an inherent feature of the fog
node’s network connectivity. It is defined as:

Propy, = latency;

where latency; Represents the inherent fixed propagation
delay associated with fog node j. This value can be pre-
determined based on the geographical location and network
infrastructure of the fog node.

Therefore the total latency Latency; of k tasks is the sum
of its transmission, processing, and propagation latencies:

PAGE f0: 237

Journal Of Technology || Issn N0:1012-3407 || Vol 15 Issue 9

Latency, = T'Ly, + PLy, + PRLy,

Therefore the fitness function is to optimize the problems of
minimize overall system latency, a fitness function is employed
to evaluate the quality of a given task assignment strategy. Our
objective is to minimize the sum of latencies for all tasks &
within the system. For a given assignment X; (representing a
specific allocation of n tasks to available fog nodes), the total
latency, L(X;), is defined as:

cpuy, - |T5]
cpu;

" (data_sizey, - |T}]|
L(Xi)=2< Wt
j

+ latencyj>
k=1

The inclusion of the term |T}| in both the transmission and
processing latency components serves as a dynamic penalty for
overloaded nodes. This crucial aspect of the fitness function
promotes effective load balancing across the available fog
nodes. By lower the latency contribution of tasks assigned to
heavily utilized nodes, the optimization algorithm is guided
towards distributing tasks more evenly, thereby preventing
bottlenecks and improving overall system performance.

5. ALGORITHM DESIGN

Algorithm 1 Resource Scheduling Algorithm Based on
WOAC
Require: Resource set
{tay,tas, ... ta,}.
max itr T, WOA size N, CNN prediction proba-
bility Py, pre-trained CNN model
Ensure: Best energy consumption Fey, latency Lypes, and
QoS score Qpest
1: Initialize whale population {X;}
2: Set Fpest ¢ 00, Lpest < 00, Qpest <+ 0, t < 0
3: while ¢ < T}« do
a+2(1— Tt
5 for each whale X; do
6 Update X; using WOA position update rules
7: if rand < P, then
3
9

task set

{TSl,T'SQ, s ,T‘Sm},

e

E; + CNN_Predict_Energy(X;)
: L; < CNN_Predict_Latency(X;)
10: Q; + CNN_Predict_QoS(X;)

11: else

12: (Ez, L;, Qz) — Simulate(Xi)

13: end if

14: if F; < Fpese and L; < Lpeg and Q; > Qpese then
15: Ehest < Ei, Lpest < L, Qbest «— Q’L

16: Xpest — X;

17: end if

18: end for

19: t+—t+1
20: end while
21: return By, Liest, Qest

5.1 Algorithm Performance Analysis

The efficacy of our Proposed WOAC for resource schedul-
ing is shaped by several core elements. The computational cost
scales with the total iterations (71,.x) and the population count
(IV), as each step requires either a swift CNN inference or a
potentially costly simulation. Convergence speed benefits from
the WOA inherent search capabilities, amplified by the CNN
predictive guidance. However, the achieved solution improve-
ment in energy, latency, and QoS hinges critically on both the
WOA exploration and the CNN precision; a high P, with an
imprecise CNN model can degrade outcomes. Thus, the pre-
trained CNN quality is paramount, as an inadequately trained
model will misdirect the optimization. The Simulate(X;)
function, when invoked, contributes notable computational
overhead. Furthermore, performance is sensitive to tuning
parameters like T.x, N, and Fey,. Scalability depends on
the CNN and simulation complexity relative to problem size.
While simulation validation can bolster robustness, an over-
reliance on a non-robust CNN especially with high P,
exposes the algorithm to vulnerabilities in novel situations.

TABLE 11
COMPARISON OF ALGORITHMS BASED ON NUMBER OF TASKS, TS
ENERGY IN(J), AND TT ENERGY(J))

Algorithm | Number of Tasks TS Energy(J) | TT Energy(J)

100 210.57 139.97

200 353.85 265.90

WOAC 300 581.82 426.80
400 805.09 601.19

500 939.62 749.56

100 247.90 171.96

200 469.89 360.05

ABC 300 674.08 555.44
400 939.06 728.60

500 1183.23 942.92

100 283.20 203.94

200 540.12 400.00

FCFS 300 770.10 611.11
400 1091.11 776.34

500 1287.23 989.21

The table II presents the performance comparison between
two distinct optimization algorithms, WOAC, FCFS and ABC
specifically in the context of energy consumption metrics for
varying computational loads. The number of tasks serves as
a proxy for the computational workload, ranging from 100 to
500 tasks where the fix same fog nodes 50. This allows for
an analysis of how each algorithm scales under increasing de-
mands. The primary performance indicators are Total System
(TS) energy and Total Tasks (TT) energy consumption in Jules
both reflecting different aspects of energy expenditure during
task execution.

The Fig 2. represents the total energy consumption of
tasks in (J/sec). It compares the WOAC, FCFS, and ABC
algorithms’ energy use as task count increases (100-500).
While both consume more energy with more tasks, WOA
consistently shows lower total consumption than ABC across
all loads, demonstrating greater energy efficiency.

PAGE RIO: 238

Journal Of Technology || Issn N0:1012-3407 || Vol 15 Issue 9

1000

400

g
E

Fi

&

g. 2. Total energy consumption of tasks (TEC).

Fig 3. shows the TS energy across three algorithms is that as
the number of tasks grows, both types of energy consumption
rise proportionally, indicating that higher workloads demand
more energy. Furthermore, it shows the comparison of results
are in ABC, FCFS and our proposed approach. It shows
the values of ABC consistently exhibits higher than WOAC.
Therefore, WOAC demonstrates better energy efficiency than
ABC under the evaluated conditions.

- WOAC

1200

1000

Total System (TS) energy consumption in(j)
8 3 g

100 200

300 400 500
Number of Tasks

Comparision of TS energy in all approaches.

TABLE III
COMPARISON OF ALGORITHMS BASED ON NUMBER OF TASKS TOTAL
LATENCY, PL, AND TL

Algorithm | Tasks | Total Latency (TL) PL TL
100 65.5 27.9 37.3
150 96.2 40.1 56.1
WOA 200 132.4 53.1 69.2
250 174.6 76.7 90.8
300 192.3 85.3 107.0
100 72.4 343 38.8
150 109.6 523 57.5
ABC 200 146.6 70.25 74.6
250 190.8 94.3 96.5
300 222.5 111.0 114.4
100 79.25 355 43.5
150 113.92 535 59.5
FCFS 200 154.10 724 80.23
250 200.45 95.21 | 105.69
300 232.40 110.6 121.4

The above Table III shows the Comparison of WOAC,
ABC and FCFS algorithms based on latencies. It details TL,
PL and TL for task numbers ranging from 100 to 300. For
each task load, all algorithms latency values are provided

across these three categories. The data consistently indicates
that WOAC achieves lower latency values in all measured
categories compared to ABC and FCFS.

120 | —o— WoAC]

B FCFS

100 125 150 175 200 225 250 215 300
Number of Tasks

Fig. 4. Comparison of TL in both approaches

In Fig 4. we define the correlation between the volume of
tasks and TL for the WOAC, ABC and FCFS algorithms.
‘When the number of task count rises, the TL increases for both
approaches. Nevertheless, the WOAC algorithm consistently
demonstrates lower latency across the entire spectrum of
task loads. This indicates that WOAC is more effective for
data transmission in computational environments handling a
substantial number of tasks.

In Fig 5 we define clearly the WOAC algorithm is superior
in processing efficiency as compared to ABC and FCFS.
Despite both algorithms experiencing increased latency with
more tasks, WOAC consistently maintains significantly lower
processing delays. This crucial benefit makes WOAC highly
effective for rapid task execution, particularly in scenarios
involving a large number of tasks.

—&— WOAC A
-%- ABC o)

100

80

60

Processing Latency (ms)

T T T T T T T T T
100 125 150 175 200 225 250 275 300
Number of Tasks

Fig. 5. Comparison of PL in both approaches

Fig 6 We shows the graph total latency performance of the
WOAC and ABC across varying task loads. Both algorithms
exhibit increased latency with higher task counts; however,
WOAC consistently achieves significantly lower overall de-
lays. This result empirically demonstrates WOAC superior
efficiency and enhanced scalability in managing substantial
workloads. The reduced latency provided by WOAC is partic-
ularly critical for time-sensitive applications, such as real-time
systems, enabling improved system responsiveness, enhanced
user experience, and more effective resource utilization.

PAGE RIO: 239

Journal Of Technology || Issn N0:1012-3407 || Vol 15 Issue 9

Total Latency (ms)
8

100 125 150 175 200 225 250 275 300
Number of Tasks

Fig. 6. Comparison of Total Latency in both approaches
TABLE IV

COMPARISON OF WOAC AND ABC ALGORITHMS BASED ON
THROUGHPUT AND DEADLINE MEETING TASKS

Algorithm | Fog Nodes | Throughput | Task Deadline
30 95.9 943
100 141.9 139.8
WOAC 150 155.5 155.0
200 194.0 194.0
30 7878 76.39
100 118.80 117.61
ABC 150 135.59 133.56
200 150.88 150.88
30 61.77 61.9
100 110.85 109.1
FCES 150 115.4 108.67
200 129.51 127.78

The Fig 7. shows a comparison of throughput evaluation
contrasting the WOAC and ABC algorithms. The fog nodes
are increasing The WOAC algorithm consistently outperforms
the ABC algorithm, with a maximum throughput of 194.0 at
200 fog nodes compared to 150.88 for the ABC are shown
in Table IV. This comparison underscores WOAC enhanced
throughput capabilities, positioning it as advantageous for
edge-based applications demanding high-performance data
processing.

200

175

150

125

100

Throughput of all Tasks

100 150
Number of Fog Nodes

Fig. 7. Comparison of Throughput

Fig 8. compares deadline compliance between WOAC and
ABC, FCFS algorithms as fog nodes scale. WOAC consis-
tently achieves higher compliance, peaking at 194.0 tasks
meeting deadlines at 200 node as compared ABC and FCFS
only 150.88, and 127.78. This clears the WOAC is effective
for real-time applications where meeting deadlines is critical.

== woac 194.0

== Fcrs

Tasks Meeting Deadline
£
o

50

100 150
Number of Fog Nodes

Fig. 8. Comparison of tasks meeting deadline

6. CONCLUSIONS

This paper presents a comprehensive comparative perfor-
mance evaluation of leading energy-efficient and QoS-aware
scheduling algorithms in fog computing environments. The
results reveal that the proposed hybrid WOAC algorithm
consistently outperforms the ABC and FCFS algorithm across
key metrics, including energy efficiency, latency reduction,
throughput, and deadline adherence. Specifically, WOAC
achieves superior energy savings and enables faster data pro-
cessing and more efficient communication, making it particu-
larly well-suited for time-sensitive applications. Additionally,
WOAC delivers significantly higher task processing rates, with
the performance advantage becoming more pronounced as
the number of fog nodes increases. However, it maintains an
almost perfect correlation between overall throughput and on-
time task completion. These findings highlight WOAC as a
highly scalable and dependable solution for fog computing
scenarios that demand both high throughput and strict deadline
compliance.

REFERENCES

[1] R. Mahmud, K. Ramamohanarao, and R. Buyya, “Application manage-
ment in fog computing environments: A taxonomy, review and future
directions,” ACM Computing Surveys (CSUR), vol. 53, no. 4, pp. 1-43,
2020.

[2] G. Li, Y. Liu, J. Wu, D. Lin, and S. Zhao, “Methods of resource
scheduling based on optimized fuzzy clustering in fog computing,”
Sensors, vol. 19, no. 9, p. 2122, 2019.

[3] G. Goel and R. Tiwari, “Resource scheduling techniques for optimal
quality of service in fog computing environment: a review,” Wireless
Personal Communications, vol. 131, no. 1, pp. 141-164, 2023.

[4] A.Rahimikhanghah, M. Tajkey, B. Rezazadeh, and A. M. Rahmani, “Re-
source scheduling methods in cloud and fog computing environments:
a systematic literature review,” Cluster Computing, vol. 25, no. 2, pp.
911-945, 2022.

[5] C. Huang, H. Wang, L. Zeng, and T. Li, “Resource scheduling and
energy consumption optimization based on lyapunov optimization in
fog computing,” Sensors, vol. 22, no. 9, p. 3527, 2022.

[6] F. Murtaza, A. Akhunzada, S. ul Islam, J. Boudjadar, and R. Buyya,
“Qos-aware service provisioning in fog computing,” Journal of Network
and Computer Applications, vol. 165, p. 102674, 2020.

[7]1 N. Potu, C. Jatoth, and P. Parvataneni, “Optimizing resource scheduling
based on extended particle swarm optimization in fog computing en-
vironments,” Concurrency and Computation: Practice and Experience,
vol. 33, no. 23, p. e6163, 2021.

PAGE NO: 240

Journal Of Technology || Issn N0:1012-3407 || Vol 15 Issue 9

[8] M. lyapparaja, N. K. Alshammari, M. S. Kumar, S. Krishnan, and C. L.
Chowdhary, “Efficient resource allocation in fog computing using qtcs
model.” Computers, Materials & Continua, vol. 70, no. 2, 2022.

[9] B. Jamil, H. Ijaz, M. Shojafar, K. Munir, and R. Buyya, “Resource
allocation and task scheduling in fog computing and internet of every-
thing environments: A taxonomy, review, and future directions,” ACM
Computing Surveys (CSUR), vol. 54, no. 11s, pp. 1-38, 2022.

[10] C. Yin, Q. Fang, H. Li, Y. Peng, X. Xu, and D. Tang, “An optimized
resource scheduling algorithm based on ga and aco algorithm in fog
computing,” The Journal of Supercomputing, vol. 80, no. 3, pp. 4248—
4285, 2024.

[11] X. Li, Z. Zang, F. Shen, and Y. Sun, “Task offloading scheme based on
improved contract net protocol and beetle antennae search algorithm in
fog computing networks,” Mobile Networks and Applications, vol. 25,
no. 6, pp. 2517-2526, 2020.

[12] M. A. Rahman, M. S. Hossain, E. Hassanain, and G. Muhammad,
“Semantic multimedia fog computing and iot environment: sustainability
perspective,” IEEE Communications Magazine, vol. 56, no. 5, pp. 80-87,
2018.

[13] Y. Kalyani and R. Collier, “A systematic survey on the role of cloud,
fog, and edge computing combination in smart agriculture,” Sensors,
vol. 21, no. 17, p. 5922, 2021.

[14] X. Huang, W. Fan, Q. Chen, and J. Zhang, “Energy-efficient resource
allocation in fog computing networks with the candidate mechanism,”
IEEE Internet of Things Journal, vol. 7, no. 9, pp. 8502-8512, 2020.

[15] S. Bitam, S. Zeadally, and A. Mellouk, “Fog computing job scheduling
optimization based on bees swarm,” Enterprise Information Systems,
vol. 12, no. 4, pp. 373-397, 2018.

[16] R. Deng, R. Lu, C. Lai, T. H. Luan, and H. Liang, “Optimal workload
allocation in fog-cloud computing toward balanced delay and power
consumption,” /IEEE internet of things journal, vol. 3, no. 6, pp. 1171-
1181, 2016.

[17] M. Mukherjee, S. Kumar, C. X. Mavromoustakis, G. Mastorakis,
R. Matam, V. Kumar, and Q. Zhang, “Latency-driven parallel task data
offloading in fog computing networks for industrial applications,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 9, pp. 6050-6058,
2019.

[18] H. Sabireen and V. Neelanarayanan, “A review on fog computing:
Architecture, fog with iot, algorithms and research challenges,” Ict
Express, vol. 7, no. 2, pp. 162-176, 2021.

[19] Y. Liu, X. Zeng, Z. He, and Q. Zou, “Inferring microrna-disease
associations by random walk on a heterogeneous network with multiple
data sources,” IEEE/ACM transactions on computational biology and
bioinformatics, vol. 14, no. 4, pp. 905-915, 2016.

[20] M. Haghi Kashani, A. M. Rahmani, and N. Jafari Navimipour, “Quality
of service-aware approaches in fog computing,” International Journal
of Communication Systems, vol. 33, no. 8, p. e4340, 2020.

[21] G. Caiza, M. Saeteros, W. Oiiate, and M. V. Garcia, “Fog computing
at industrial level, architecture, latency, energy, and security: A review,”
Heliyon, vol. 6, no. 4, 2020.

[22] Z. Lin, L. Lu, J. Shuai, H. Zhao, and A. Shahidinejad, “An efficient
and autonomous planning scheme for deploying iot services in fog
computing: A metaheuristic-based approach,” IEEE Transactions on
Computational Social Systems, vol. 11, no. 1, pp. 1415-1429, 2023.

[23] C. Tameling, S. Stoldt, T. Stephan, J. Naas, S. Jakobs, and A. Munk,
“Colocalization for super-resolution microscopy via optimal transport,”
Nature computational science, vol. 1, no. 3, pp. 199-211, 2021.

[24] A. Brogi, S. Forti, and A. Ibrahim, “Optimising qos-assurance, resource
usage and cost of fog application deployments,” in International con-
ference on cloud computing and services science. Springer, 2018, pp.
168-189.

[25] S. Sonkamble, S. Chandra, and P. R. Pujari, “Application of airborne
and ground geophysics to unravel the hydrogeological complexity of the
deccan basalts in central india,” Hydrogeology Journal, vol. 30, no. 7,
pp. 2097-2116, 2022.

PAGE RO: 241

