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Abstract The social and economic importance of earthquake prediction has 
long been obvious. Hence, developing an effective earthquake prediction pro- 
gram became the most important objective of researchers in earthquake seis- 
mology. Indestructible earthquakes are typically modeled as a simple planar 
fault plane or a combination of multiple planar fault segments. The present 
paper investigates the deforming phenomena of a nonplanar (containing three 
planar parts) dip-slip fault lying in a viscoelastic half-space of a Standard 
linear solid medium. The expressions of displacement due to the fault move- 
ment and stress-strain accumulation or releases on the ground deformation 
are deduced by inducing appropriate boundary conditions in Laplace trans- 
formation, Green’s function, and fractional calculus techniques. The efficacy 
of different affecting parameters viz. dip angle of the fault with horizontal, 
distance of the fault from the free surface, velocity of the fault movement, and 
fractional order are portrayed graphically. A comparative study has been done 
to understand the effect of fractional derivatives on displacement and stress- 
strain accumulation or release. These results may help to study the subsurface 
deformation and its effect on fault movement, causing earthquakes. 

Keywords Nonplanar Fault · Dip-slip Fault Movement · Integral Transform · 

Fractional Calculus Method · Green’s Function Technique 
 

 
1 Introduction 

Fault geometry is a key factor controlling fault mechanics. These faults may 
be infinite faults (whose length is considerable compared to their width e.g. 
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Alaska-Aleutian Megathrust fault) of finite faults (whose length is not so large 
compare to its width, e.g. Aedipsos-Kandili fault). Also the movement of a 
fault can be along the strike-line (called strike-slip fault, e.g. Anatolian fault) 
or can be parallel with the dip of the fault (called dip-slip fault, e.g. Aedipsos 
Kandili fault). A fault is called a surface-breaking fault if the rapture is visible 
on the ground along the fault (e.g., Lost River fault) and a fault is called a 
buried fault if the rapture does not produce a visible offset on the ground along 
the fault (e.g. Northridge fault). Large earthquakes are typically modelled 
using simple planar fault planes or a combination of multiple planar fault 
segments. In general, however, earthquakes occur on non-planar faults with 
significant geometric changes in both strike and dip directions. The Ventura 
Basin contains a complex network of nonplanar faults which is located in the 
Transverse Mountains of southern California and ([26]). A earthquake of 7.2 
magnitude struck Nippes, Haiti on 14 August 2021 which is a rupture due to 
a nonplanar dipping fault ([16]). 

To understand the earthquake process in seismically active regions, it is 
necessary to develop theoretical models of the slow seismic ground deforma- 
tions observed in seismically active areas during aseismic periods. Several dy- 
namic models have been developed to study various fault systems by many 
researchers. Singleton et al. (2021)[30] discussed the current status of faults 
and underground structures in the San Diego Bay Pull-Apart Basin, Califor- 
nia. Depending on the variation in size and orientation, one of a kind faults 
can produce extraordinary forms of rock deformation[see Bouchez and Nicolas 
(2021)[2]]. A Green’s function method was initiated in a semi-infinite elastic 
medium by Steketee (1958a)[31] and (1958b)[32]. The analytical expression 
of displacement due to movement of a vertical rectangular fault in a semi- 
infinite elastic medium has been observed by Chinnery (1961)[8]). Near to the 
Earth’s crust, the change of stress accumulation or releases in the neighbor- 
hood of fault’s edge demonstrated by Chinnery (1963[9], 1964[10]). Maruyama 
(1964)[19] explained various models of containing earthquake fluctuations. One 
infinite fault model in standard linear solid medium has been studied by Mon- 
dal et al. (2020)[21]. One nonplanar fault model in viscoelastic half-space has 
been presented by Sen et al. (2012)[28]. A nonplanar fault model with two 
interconnected parts lying in an elastic layer over viscoelastic half space has 
been studied by Sen and Karmakar (2013)[29]. A three-dimensional mechanical 
model has been illustrated by Marshall et al. (2008[18]) which is incorporating 
both nonplanar and rectangular planar faults. 

Keeping this in view, we introduce a model of nonplanar dip-slip fault 
containing three planar parts situated in a viscoelastic half-space of stan- 
dard linear solid medium which explain the representation of the lithosphere- 
asthenosplere system. But, till date, no attampts were made to investigate 
such phenomena on an nonplanar fault structure. The fault model has been 
considered as a buried, nonplanar, inclined. The movement across the fault has 
been taken as creeping, aseismic and dip-slip type. After occurrence of a de- 
structible earthquake, we study the fault movement and also analysis the effect 
of the fault on ground by obtaining displacement and stress-strain accumula- 
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tion and/or releases due to fault movement. Moreover, the integral transform, 
Green’s function technique and fractional calculus method are introduced to 
derive the expressions of displacement and stress-strain accumulation or re- 
lease. The effect of different affecting parameters viz. inclinations of the fault 
with the free surface, velocity of the fault movement, depth of the fault from 
the free surface and fractional order derivative on displacement and stress- 
strain components is illustrated graphically. 

 

 
2 Mathematical Model 

 

 

 
Fig. 1 A simplified outlook of our model on the plane z1 = 0 

 

 

To formulate the present problem, a theoretical model has been considered 
in lithosphere asthenosphere system as depicted through Fig. 1. The fault ge- 
ometry is nonplanar and it contains three interconnected planar parts having 
different lengths and inclinations with horizontal. The nature of the fault is 
infinite, buried (at a finite depth from the free surface), inclined and the move- 
ment of the fault is dip-slip. The fault is situated in a viscoelastic half-space 
of Standard linear solid medium. A rectangular Cartesian coordinate system 
(z1, z2, z3) is introduced with the free surface of the viscoelastic half-space. z1 
axis is extended parallel to the upper edge (strike) of the fault on free surface. 

z3 axis is extended vertically downward into the half space and z3 ≥ 0. The 
fault contains three planar parts as PQ = R1, QR = R2 and RS = R3 with 
corresponding inclination (with horizon) θ1, θ2 and θ3 respectively. The total 
inclined depth across the fault is R = R1 + R2 + R3. The depth of the planar 
parts PQ, QR, RS from the free surface are r1, r2, r3 respectively. The fault 
parts PQ, QR, RS starts to move at time t = T1, T2, T3 respectively. Since 
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1 

1 

1 

≥ 

z2 = z′ sin θ1 + z′ cos θ1 

z3 = —z′ cos θ1 + z′ sin θ1 + r1  

z2 = z′′ sin θ2 + z′′ cos θ2 

2 3 

2 3 

2 

2 3 

the fault is buried and inclined then another three rectangular cartesian co- 
ordinate system (z′ , z′ , z′ ), (z′′, z′′, z′′) and (z′′′, z′′′, z′′′) has been considered 

1  2  3 1 2 3 1 2 3 

across the planar parts PQ, QR, RS  respectively. So the relation between 
(z1, z2, z3) with (z′ , z′ , z′ ), (z′′, z′′, z′′) and (z′′′, z′′′, z′′′) are respectively 

1  2  3 1 2 3 
 
 

 

z1 = z′ 
 

 

1 2 3 

 


 

 
 

2 3 
 
 
 

 

z1 = z′′ 
 

 
 

 


 

z3 = —z′′ cos θ2 + z′′ sin θ2 + r1 + r2  

 

and 
 
 
 
 

 

z1 = z′′′ 

z2 = z′′′ sin θ3 + z′′′ cos θ3 

 

 


 

2 3 (3) 

z3 = —z′′′ cos θ3 + z′′′ sin θ3 + r1 + r2 + r3  

 
Let the displacement components along coordinate axes z1, z2, z3 are v1, 

v2, v3 respectively; γ11, γ12, γ13, γ22, γ23, γ33 are the stress components and 
E11, E12, E13, E22, E23, E33 are the strain components. Since the fault is taken 
to be very long along z1 axis compare to its depth, so all the displacement, 
stress-strain components independent on z1 axis and become function of z2, 
z3 and time t. The displacement, stress and strain components categorize 
into two groups - one group corresponding with strike-slip movement (v1; 
γ12, γ13; E12, E13) and other ground corresponding with dip-slip movement(v2, 
v3; γ22, γ23, γ33; E22, E23, E33) (Mukhopadhyay et al. 1980a[?], 1980b[24]). In 
the present study, we consider the second group only. The preliminary obser- 
vation commences in a scenario when the fault movement does not present in 
the medium that is the time at t = 0 and the viscoelastic medium is in a quasi 
static aseismic state but a very slow aseismic deformation occurs continuously. 
These movement are sustained by various tectonic forces including mantel con- 
vection, internal pressure within the earth and other geological changes. The 
components of displacement, stress and strain satisfy certain constitutive equa- 
tions, stress-equation of motion and boundary conditions for an instant t 0 
whrich are illustrated below. 

(1) 3 

(2) 
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∂tα 

∂tn 

∂z3 

23 µ ∂tα 23 2 ∂z3 ∂z2 ∂tα ∂z3 ∂z2 

wher e n — 1 < α < n such that n is defined by 

 

2.1 Constitutive Equation 

The constitutive equations for dip-slip fault in a visco-elastic half-space of 
fractional order Standard linear solid medium (Segall[27]) at time t are 

γ + η ∂
α 

(γ  ) = µ∂v2 + 2η ∂
α
  

∂v2

 

 

22 µ ∂tα 22 ∂z2 
∂tα ∂z2  

γ + η ∂α (γ  ) = µ ∂v2 + ∂v3  + η ∂
α ∂v2 + ∂v3  

 

γ + η ∂
α 

(γ  ) = µ∂v3 + 2η ∂
α
  

∂v3

 
 

33 µ ∂tα 33 ∂z3 ∂tα ∂z3  

where ∂
α  

is the fractional operator of order α (0 < α ≤ 1), η appears for 
viscosity of the material and µ represents rigidity of the material. 

In this study, we are considering the Caputo fractional derivative (Ca- 
puto[6], 1969), which is defined by 

∂α 
f (t) =  1  

∫ t ∂n 

f (ξ) 
dξ 

∂tα Γ (n — α) 
0 (t — ξ)α−n+1 

n = 
[α] + 1 if α ∈/ N ∪ 0 

α + 1 if α ∈ N ∪ 0 

2.2 Stress Equation of Motion 

We start our observation when there is no seismic activity present in the 
medium and that time is taken to be t = 0. The gradual aseismic, quasi-static 
deformation implies that inertial forces are negligible (Mukhopadhyay et al. 
1980a[24]). Additionally, considering the initial stress level as the reference 
point, there is no alteration in body forces across the medium. So, the relative 
change in body forces can be considered as zero. Hence, the stress equation of 
motion for dip-slip fault can be written as 

∂ 
∂z2 (γ22) + ∂ (γ23) = 0 


 

 ∂  (γ32) +  ∂  (γ33) = 0 (5) 
∂z2 ∂z3  

 
2.3 Boundary condition 

The boundary conditions for |z2| → ∞, z3 ≥ 0 is 

γ22(z2, z3, t) = γ∞(0)(1 + kt) cos θ1 (6) 

where γ∞(t) represents tectonic deformation that acts far from the fault due 
to mantle convection in the lithospheric-asthenospheric system and causes slip 

(4) 
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
 

   

∂tα 
2 

= — 
2 2 

= — 
2 

2η 

 

 µ  µ 

motion across the fault. γ∞(t) is obtain as γ∞(0)(1 + kt), where k > 0 so that 
the tectonic forces increases linearly with time. 

At z3 = 0 

γ23 = 0 
γ33 = 0 (7) 

 

where —∞ < z2 < ∞ and t ≥ 0. 
Also as z3 → ∞ and for —∞ < z2 < ∞, t ≥ 0, 

γ23(z2, z3, t) → 0 

  

(8) 
γ33(z2, z3, t) → γ∞(0)(1 + kt) sin θ1  

where γ∞(0)= γ∞(t)|t=0. 

 
2.4 Initial Condition 

The initial values of displacement, stress and strain components are taken as 
(vi)0, (γij)0 and (Eij)0. 

 
3 Solution 

Equation (4) may be written as 

γ + η ∂
α 

(γ  ) = µ∂v2 + 2η ∂
α
  

∂v2

  

 

22 µ ∂tα 22 ∂z2 
∂tα ∂z2 

 
γ + η ∂

α 

(γ  ) = µ∂v2 + 2η ∂
α ∂v2 

23 µ ∂tα 23 ∂z3 ∂tα ∂z3   

γ + η ∂
α 

(γ ) = µ∂v3 + 2η ∂α
  

∂v3

  
 (9) 

23 µ ∂tα 23 ∂z2 ∂tα ∂z2  

γ + η ∂
α 

(γ  ) = µ∂v3 + 2η ∂
α
  

∂v3

  
 

33 µ ∂tα 33 ∂z3 ∂tα ∂z3   

Applying differentiation method on first and second equation of (9) w.r.t 
z2 and z3 respectively, then adding and with aid of equation of (5) it is found 

that, ∂
α 

Q v2 2η Q v2 
∂α 

∂tα Q v3 2η Q v3 
neglecting 1st and higher order derivative of v1, v2 and using initial condi- 

tion v2|t=0 = (v2)0 and v3|t=0 = (v3)0 on the above expression we get 

2 µ α 

and 

Q V2 = 0, where V2 = v2 — (v2)0Eα(— 
2η 

t ) (10) 

2 µ α 

Q V3 = 0, where V3 = v3 — (v3)0Eα(— 
2η 

t ) (11) 

where Eα(—  µ tα) is Mittage-Leffler function. 

and 
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k=1 

k=1 

k=1 ij k 


 

∂z3 

s + 

s + 

s + 

2 0 α   µ 

2η

3 3 0 α   µ 

2η
 

 

The final solutions for displacement, stress and strain transform to 

vi = 
Σ4 

(vi)k (i = 2, 3) 

 

γij = 
Σ4 

Eij = 
Σ4 

(γij)k, (i, j = 2, 3) 
 

(e ) , (i, j = 2, 3)  
(12) 

 
where (vi)1 (i = 2, 3), (γij)1 and (Eij)1 (i, j = 2, 3) are components of 

displacement, stress and strain respectively in the absence of fault movement; 
(vi)2 (i = 2, 3), (γij)2, (Eij)2 (i, j = 2, 3) are components displacement, stress 
and strain respectively due to movement of planar part PQ; (vi)3 (i = 2, 3), 
(γij)3, (Eij)3 (i, j = 2, 3) are components displacement, stress and strain re- 
spectively due to movement of planar part QR; (vi)4 (i = 2, 3), (γij)4, (Eij)4 
(i, j = 2, 3) are components displacement, stress and strain respectively across 
the planar part RS. 

 
3.1 Derivation of the components of displacement and stress-strain in the 
absence of fault movement 

Now for solving the above boundary value problem, Laplace transform has 
been taken on all the stress equation of motion (5), boundary conditions (6 to 
8)and governing equations (10 & 11) respectively, we obtain 

 
∂ 

∂z2 (γ¯22) + ∂ (γ¯23) = 0 

 

 ∂  (γ¯32) +  ∂  (γ¯33) = 0 (13) 
∂z2 ∂z3 

 
1 k 

γ¯22 = γ∞(0)( 
s 

+ 
s2 ) cos θ1 for z3 ≥ 0 (14) 

γ¯23 = γ¯33 = 0 for z3 = 0 

γ¯23(z2, z3, t) → 0 for z3 → 0 


 
 

(15) 
γ¯  → γ  (0)(  + k ) sin θ for z → 0 


 

1 1 
  

Q2V¯ = 0, wherev¯ = (v )  s 

 

α−1 
 

Q2V¯ = 0, wherev¯ = (v ) sα−1 

 

(16) 

 
Let us assume the trial solution of (16) by assuming initial displacement field 
as zero: 

 

sα−1 

v¯2 = α  µ (v2)0 + a1z2 + b1z3 (17) 
2η 

sα−1 

v¯3 = 
α  µ (v3)0 + a2z2 + b2z3 (18) 

2η 

s s2 

s + 

33 ∞ 1 3 

2 2 

3 

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 11

PAGE NO: 232



 

2η 

2η  

µ µ 

µ µ 2 

µ µ 

2η µ µ 2η 

2η µ µ 2η (v3)1 = (v3)0Eα(— µ tα) + γ∞(0) sin θ1 z3 
h

(1 — ηk )(1 — Eα(— µ tα)) + kt
i 

 

(E22)1 = (E22)0Eα(— µ tα) + γ∞(0) cos θ1 

h
(1 — ηk )(1 — Eα(— µ tα)) + kt

i 
 

2η µ µ 2η 

 

(v2)1 = (v2)0Eα(— µ tα) + γ∞(0) cos θ1 z2 
h

(1 — ηk )(1 — Eα(— µ tα)) + kt
i 

 

where a1, b1, a2, b2 are constant or function of z2 and z3. 

Now taking Laplace transform on constitutive equation (5), neglecting first 
and higher order derivative of v2 and v3 and using the value of v¯2 and v¯3 we 
obtain, 

 

(1 + η sα)γ¯22 — η sα−1(γ22)0 = a1(µ + 2ηsα) 

 

(1 + η sα)γ¯23 — η sα−1(γ23)0 = 1 (a2 + b1)(µ + 2ηsα) 
 

(1 + η sα)γ¯33 — η sα−1(γ33)0 = b2(µ + 2ηsα) 
 

 
Using Eqs. (14 & 15) in Eq. (19) we have, 

 

(γ22)1 = (γ22)0Eα(— µtα) + γ∞(0) cos θ1(1 + kt — Eα(—  µ tα))  
η 

(γ23)1 = (γ23)0Eα(— µ tα) 
µ α 

2η 
 

 
 µ  α 




 

(γ33)1 = (γ33)0Eα(— η t ) + γ∞(0) sin θ1(1 + kt — Eα(— 2η t )) 

 
2η µ µ 2η 

(E23)1 = (E23)0Eα(—  µ tα) 
 

h i  

(E33)1 = (E33)0Eα(—  µ tα) + γ∞(0) sin θ1  (1 — ηk )(1 — Eα(—  µ tα)) + kt  
 

 

From the expression of γ22 and γ33 in (20) it is obtained that the resultant 
stress parallel to the fault plane with y2 and y3 directions is an expanding func- 
tion of t and depends on both horizontal and vertical directions. At t = 0, the 
stresses attend initial stress values (γ22)0 and (γ33)0 and after that it is increas- 
ing gradually with respect to time and ultimately converges γ∞(0) cos θ1(1+kt) 
and γ∞(0) sin θ1(1 + kt) respectively. The rheological behavior of viscoelastic 
material near to the fault plane state that there are some threshold amount of 
stress in the material (say γc) called the critical value of stress and also it is 

taken that |γc| <[Stress value on right hand side boundary]. Therefore, after 
a certain time T1 (critical time level), when in the neighbourhood of fault the 
accumulated stress overcome the critical stress level , a fault movement take 
place across the fault plane.In this model, it is obtain that the fault begins to 
slip when the resulting stress exceeds a critical value (γc) at the critical time 
T1 . 

(20) 

(19) 
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2 

— 
2 

3 

3 

3 

3 

′ 

3.2 Derivation of displacement and stress-strain field after the fault 
movement 

Now we obtain a solution of our problem in view of that across the fault 
plane, the movement across the fault has been occurred due to overcome of 
the critical stress level by the average stress over the fault at T1 . In view of 
(1) to (8 with an extra condition of discontinuity in displacement components 
v3 due to dislocation across the fault as follows: 

 
[v3]P Q = W1(t1) f (z′ ) H(t1)   (z′ = 0, 0 ≤ z′ ≤ R1, t1 ≥ 0, t1 = t — T1) 

3 2 3 

(21) 
where [v3] denotes the relative displacement having a discontinuity which 

is described as 
[v3]P Q = lim 

(z' →0+) 
(v3) lim 

(z' →0−) 
(v3) (22) 

W1(t1) = w1t1 represents the dislocation at the upper edge of PQ part, w1 
is the velocity of movement of PQ, H(t1) is the Heaviside step function whose 
value is obtained as 1 for t1 > 0 and f (z′ ) is the depth dependent dislocation 
function where variable z′ varies from the free surface to downward direction 
over the fault crack on z1 = 0. The value of the heaviside function 

Then equation (21) is articulated as 

[v3]P Q = W1(t1)f (z′ ) (23) 

Taking Laplace transform on equation (23) 

[v¯3]P Q = W1(s) f (z′ ), where v¯3 is the Laplace transform of v3 and ’s’ is 
the Laplace transform variable with respect to time. 

For t1 ≤ 0, [(v3)]P Q = 0 . 

The solutions of displacement, stress and strain components after the creep- 
ing movement across the planar part PQ are obtained by using Greens function 
technique and Laplace transform. A suitable modified form of Greens function 
technique developed by Maruyamma (1964 [19], 1966[20]) and Rybicki (1971 
[25]). Following Maruyamma (1966) 

(v¯ ) (Q ) = 

∫ 

[(v¯ ) (s)] [G′ (Q , P )dξ — G  (Q , P ) dξ ] 
3 2 1 3 2 

PQ 
33 1 1 2 32 1 1 3 

 

(24) 

where Q1(z1, z2, z3) represents field point in half-space, P1(ξ1, ξ2, ξ3) 

is any point on the fault PQ. 0 ≤ ξ2 ≤ l1 cos θ1, 0 ≤ ξ3 ≤ l1 sin θ1, and 
ξ2 = ξ3 cot θ1. 

Since the inclined angle across PQ is θ1 with the free surface than the 
transformation of co-ordinate system (ξ1, ξ2, ξ3) to (ξ′ , ξ′ , ξ′ ) is illustrated 

1 2 3 

as 
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1 

2 

M 2 

2 2 2 2 

2π 

2 3 

2 3 

33 2π L2 M 2 32 2π L2 

0 3 ξ' 2−2ξ' (z2cosθ1+z3sinθ1)+(z2
2+z3

2)+r1
2−2z3r1−2r1ξ' sinθ1 

2 2π 2 µ η 1 

2 2π 3 µ η 1 

 

 
 

ξ1 = ξ′ 

ξ2 = ξ′ sin θ1 + ξ′ cos θ1 



 

ξ3 = —ξ′ cos θ1 + ξ′ sin θ1 + r1 

 

 
From ξ2 = ξ3 cot θ1 it is found that, ξ′ = 0 
Then from equation (25), ξ1 = ξ′ , ξ2 = ξ′ cos θ1 and ξ3 = ξ′ sin θ1 + r1 

1 3 3 
So, dξ1 = dξ′ , dξ2 = cos θ1dξ′ and dξ3 = sin θ1dξ′ 

1 2 3 

Now it is assumed that G′ =  1  [ z3−ξ3 — z3+ξ3 ] and G′ =  1  [ z2−ξ2 + 
z2−ξ2 ] where L2 = (z2 — ξ2) + (z3 — ξ3) and M  = (z2 — ξ2) + (z3 + ξ3)2 

 
(v¯ ) (Q ) = W1(s) 

ψ1(z , z ) 
3 2 1 2π 2 3 

Taking inverse Laplace transform, (v3)2 = W1(t1) H(t — T1)ψ1(z2, z3) 
where 

ψ1 = 
∫ R1 f (ξ′ )[  (z2sinθ1−z3cosθ1)+r1cosθ1  + 

 (z2sinθ1+z3cosθ1)+r1cosθ1  ]dξ′ 
ξ' 2−2ξ' (z2cosθ1−z3sinθ1)+(z2

2+z3
2)+r1

2+2z3r1+2r1ξ' sinθ1 
3 

3 3 3 

It is to be illustrated that for t1 = t — T1 ≤ 0, v3 = 0. 

Since after the fault slip v2 is continuous then due to the movement across 

PQ for t1 ≥ 0, v2 = 0. 

Then (γ¯22)2 = 0 

Taking inverse Laplace transform (γ22)2 = 0. 

α α 1 
Now (γ¯ ) = s ∂v¯3 = s W1(s) 

ψ1, where ψ1 = ∂ψ 
23 2 1 + s

α ∂z2 1 + s
α 2π 2 2 ∂z2 

η µ η µ 

Taking inverse Laplace transform w.r.t t1 and noting that (γ¯23)2 = 0 for 

t1 ≤ 0 

(γ23)2 = µ W1(t1) ψ1 H(t1)[t1 + η (1 — Eα(— µtα))] 

Similarly (γ33)2 = µ W1(t1) ψ1H(t1)[t1 + η (1 — Eα(— µtα))] 

Also (E23)2 = H(t1) V1(t1) ψ1 
4π 2 

and 
(E33)2 = H(t1) 

V1(t1) ψ1 

4π 3 

The solutions of displacement, stress and strain components after the move- 
ment of PQ part are as follows: 

(25) 

3 3 3 
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2π 
 

2π 

 

3 

2 

— 
2 

∫ 

(γ23)2 = µ w1 ψ1H(t1)[t1 + η (1 — Eα(— µtα))]  

(γ33)2 = µ w1 ψ1H(t1)[t1 + η (1 — Eα(— µtα))] 
 

(γ23)3 = µ w2 ψ2H(t2)[t2 + η (1 — Eα(— µtα))]  

(γ33)3 = µ w1 ψ2H(t2)[t2 + η (1 — Eα(— µtα))] 
 

3 ξ''2−2ξ''((z2) cos θ2+z3 sin θ2)+((z2)2+z3
2)+(r1+r2)2−2z3(r1+r2)−2(r1+r2)ξ'' sin θ2 

 

 

2 2π 2 µ η 1 

2 2π 2 µ η 2 

 

(v3)2 = W1(t1) H(t — T1)ψ1(z2, z3) 

(γ22)2 = 0 

 

 


 

 
 

 

2 2π  3 

(E22)2 = 0 

µ η 1 

 

 

(26) 

(E23)2 = w1t1 H(t1)ψ1(z2, z3) 
2π 2 

 
(E33)2 = w1t1 H(t1)ψ1(z2, z3)  

2π 3 

where ψ1 = ∂ψ
1 

and ψ1 = ∂ψ
1 

2 ∂z2 3 ∂z3 

The shifting of origin also helps us to obtain the displacement, stress-strain 
components for second planar part QR as follows 

(v3)3 = W2(t2) 
H(t — T2)ψ2(z2, z3) 

(γ22)3 = 0 

 

 


 

 
 

 

2 2π  3 

(E22)3 = 0 

µ η 2 

 

 

(27) 

(E23)3 = w2t2 H(t2)ψ2(z2, z3) 
2π 2 

 
(E33)3 = w2t2 H(t2)ψ2(z2, z3)  

where where ψ2 

2π 

= ∂ψ
2 

, ψ2 

3 

=  ∂ψ2 and the discontinuity in v due to 
2 ∂z2 3 ∂z3 

3 

dislocation across QR results in: 

[v3]QR = W2(t2) f (z′′) H(t2) (z′′ = 0, 0 ≤ z′′ ≤ R2, t2 ≥ 0, t2 = t — T2) 
3 2 3 

(28) 
where [v3] denotes the relative displacement across QR, W2(t2) = w2t2, w2 

is the velocity of movement of QR, H(t2) is the Heaviside step function and 
f (z′′) is the dislocation function depends on depth. 

[v3]QR = lim 
(z''→0+) 

(v3) lim 
(z''→0−) 

(v3) (29) 

and 
ψ2 =  

R2 
f (ξ′′)[  ((z2) sin θ2−z3 cos θ2)+(r1+r2) cos θ2  + 

 ((z2) sin θ2+z3 cos θ2)+(r1+r2) cos θ2  ]dξ′′ 
ξ ''2−2ξ ''((z2) cos θ2−z3 sin θ2)+((z2)2+z3

2)+(r1+r2)2+2z3(r1+r2)+2(r1+r2)ξ '' sin θ2 
3 

3 3 3 

R1 3 3 3 
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2π 
 

3 

2 

— 
(z 

(γ23)4 = µ w3 ψ3H(t3)[t3 + η (1 — Eα(— µtα))]  

(γ33)4 = µ w3 ψ3H(t3)[t3 + η (1 — Eα(— µtα))] 
 

R2 3 ξ'' '2−2ξ'' '((z2) cos θ3+z3 sin θ3)+((z2)2+z3
2)+(r1+r2+r3)2−2z3(r1+r2+r3)−2(r1+r2+r3)ξ'' ' sin θ3 

 

2 2π 2 µ η 3 

Similarly, for the other branch RS, we obtain respective solutions of dis- 
placement, stress-strain components as follows 

(v3)4 = W3(t3) 
H(t — T3)ψ3(z2, z3) 

(γ22)4 = 0 

 

 


 

 
 

 

2 2π  3 

(E22)4 = 0 

µ η 3 

 

 

(30) 

(E23)4 = w3t3 H(t3)ψ3(z2, z3) 
2π 2 

 
(E33)4 = w3t3 H(t3)ψ3(z2, z3)  

3 where ψ3 = ∂ψ , ψ3 
 

2π 

 

= ∂ψ3 
 

3 

 
and also the discontinuity in displacement 

2 ∂z2 3 ∂z3 

across RS as follows: 

[v3]RS = W3(t3) f (z′′′) H(t3) (z′′′ = 0, 0 ≤ z′′′ ≤ R3, t3 ≥ 0, t3 = t — T3) 
3 2 3 

(31) 
where W3(t3) = w3t3 proposed the dislocation across RS part, w3 is the 

velocity of movement of RS, H(t2) is the Heaviside step function and f (z′′) is 
the dislocation function depends on depth. 

and 

[v3]RS = lim 
(z'''→0+) 

(v3) lim 
'''→0−) 

(v3) (32) 

ψ3 = 
∫ R3 

f (ξ′′′)[  ((z2) sin θ3−z3 cos θ3)+(r1+r2+r3) cos θ3  + 

 ((z2) sin θ3+z3 cos θ3)+(r1+r2+r3) cos θ3  ]dξ′′′ 
ξ'' '2−2ξ'' '((z2) cos θ3−z3 sin θ3)+((z2)2+z3

2)+(r1+r2+r3)2+2z3(r1+r2+r3)+2(r1+r2+r3)ξ' '' sin θ3 3 
3 3 3 

4 Numerical Computations 

We have analyzed the displacements, stresses and strains components suc- 
ceeding the restoration of fault movement for different inclinations, different 
creep velocities and different orders of the fractional derivative by introducing 
suitable parametric values of the model parameters from Sen and Karmakar 
(2013)[29], Sen et al. (2012)[28], Mondal et al. (2019)[22], Debnath and Sen 
(2014[4], 2015[5]), which are relevant to the real world fault system. It is stud- 
ied that the depth of the fault consider in between 10 to 15 km and therefore 
we assume as R1 = 5.5 km, R2 = 5 km and R3 = 4.5 km that is, total 
arc length is R = 15 km. The inclined angle with horizontals are taken as 
θ1, θ2, θ3 = π , π , π , π 

6  4  3  2 

From various geological models on Lithosphere-asthenosphere system of 
the articles Cathles (1975) [3], Aki and Richard (2002)[1], Fowler (1983)[13], 

2 

3 3 3 
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∈ 

h i 

3 

3 2 
3 

R1 

3 

R1 

3 6 6 
3 

R3 3 
3 

R3 

Chift et al. (2002)[7], Karato (2020)[14] and from the recent studies Kundu et 
al. (2021)[15], the value of rigidity (µ) and viscosity (η) are taken as follows: 

µ = 3.5 × 1010 N/m2, η = 3 × 1020 N/m2, 
Depth of the planar parts r1, r2 and r3 are taken as 5 km, 10 km and 15 

km respectively. 
The creep velocity across the planar parts due to fault movement is taken 

as w1, w2, w3 = 0.01, 0.02, 0.03, 0.04 meter/year. 
Since fractional order α (0, 1], we consider α = 0.1, 0.4, 0.7, 1 for the 

observation. 
The initial values of γ22, γ23 and γ33 are taken as (γ22)0, (γ23)0 and (γ33)0 

= 30 × 105 N/m2. Initial stress at infinity (γ∞(0))= 30 × 105 N/m2. 
The critical stress level has been considered as γc = 200 bar (from Debnath 

and Sen (2014) [4]). So, in equation (20), γ22 and γ33 overreach this critical 
stress level after 111.08 years approximately. So, for our calculation, the critical 
time (T1) has been observed as 111.08 years . 

Creep functions are taken as from (Mondal and Debsarma [23]) 

f (z′ ) = 1 2 — 2( z
' 

)2 + ( z
' 

)4  across PQ 

f (z′′) = 1 
h√

3 — (
√

3 — 
√

2)( z
''−R1 )

i2 

across QR and 
3 6 R2 

f (z′′′) = 1 
h

1 — 5 ( z
'''−R1−R2 )2 + 1 ( z

'''−R1−R2 )3
i2 

across RS 

 
5 Result and Discussion 

5.1 Effect of inclination of the fault: 

Fig. 2 (a) and (b) represent the variation of rate of displacement (v3) in ver- 
tically downwards direction due to movement of non-planar dip-slip fault for 
several values of inclination (θ1) across the planar part PQ when θ2 and θ3 
are taken as 300 and 600 respectively and for several values of inclination (θ2) 
across the planar part QR when θ1 and θ3 are taken as 600 and 300 respec- 
tively. The rate of displacement is stated as follows: 

∂ 
[(v3)2 + (v3)3 + (v3)4] 

∂t 

From these figures, it is noticed that the rate of displacement increases con- 
tinuously for both the cases with decrease in inclination. For z2 > 0, rate of 
v3 increases slowly and after attaining maximum value near z2 = 3 km it de- 
creases towards zero. But there is a very little impact of θ2 on rate of change of 
v3 which is shown from Fig. 2(b). It is obtained that the rate of displacement 
increases with decreasing value of θ2 but this change of rate of v3 is very little. 
After attaining highest value near z2 = 3 km, it decreases towards zero. If the 
inclination across the planar part PQ is changed only and except this all oth- 
ers are fixed then the rate of displacement attains maximum value near about 

1.3 × 10−3 meter/year. If the inclination across fault part QR only changed 
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Fig. 2 Variation of rate of displacement in z3 direction against z2 for several values of 
inclination (a) θ1 across PQ and (b) θ2 across QR 

 

 

then the maximum displacement across the fault is 1.1 × 10−3 meter/year (ap- 
proximately). If we change the inclination (θ3) across the planar fault part RS 
then there is no variation of the curves for different values of inclination which 
notified that if the parts of the fault spread out in downwards direction then 
there is a very little effect of the end parts of the faults being noticeable. 

The influence of inclination θ1 across the planar part PQ and θ2 across the 
planar part QR on stress component for dip-slip movement (γ23) is depicted 
through Figs. 3 (a) and (b) respectively. From Fig. 3 (a), it is observed that 
γ23 attains maximum value 7000 N/m2 (approximately) near z2 = 0. For 

|z2| → ∞, it decreases towards zero. For z2 > 0, γ23 decreases with decreasing 
value of θ1. After releasing all the stress (γ23) near about z2 = 6 km, it 
increases towards zero. From Fig. 3 (b), it is obtained that all the curves 
for different values of inclination (θ2) across the planar fault part QR almost 
coincide. For z2 > 0, γ23 releases all the stress near z2 = 3 km and after that 
it increases towards zero. If we compare Fig. 3 (a) with (b), it is noticed that 
the stress releases very quickly across PQ part comparing to across QR part 
of the nonplanar fault. 

 
 

5.2 Effect of velocity of the fault movement: 

Figs. 4 (a), (b) and (c) delineate the impact of creep velocity on rate of displace- 
ment (v3) in z3 direction. These figures illustrated that the rate of displacement 
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Fig. 3 Variation of rate of stress γ23 against z2 for several values of inclination (a) θ1 
across PQ and (b) θ2 across QR 

 
 
 
 
 

 

increases continuously for all the cases with increasing value of creep velocity. 
For all the cases, rate of v3 increases for z2 > 0 and after attaining maximum 
value it is diminishing towards zero. Comparing Fig. 4 (a), (b) and (c), it is 
obtained that for different creep velocity across the fault part PQ, the change 
of rate of v3 is more visible than across the fault part QR. Across the fault 
part RS, all the curves are coincide which shows that if the planar part RS 
of the nonplanar fault changes it velocity of movement then it does not effect 
on rate of displacement. 

 
Figure 5 (a) and (b) represent the impact of velocity of the fault movement 

of first (PQ) and second planar parts (QR) of the nonplanar fault on rate of 
stress γ23 respectively. It is observed that γ23 increase with increasing value 
of velocity across PQ. For y2 rate of γ23 increases and after attaining 
highest value it diminishing towards zero. But across the 2nd planar fault part 
QR, rate of γ23 coincide for different values of change of velocity. The reason 
behind the coincidence of the all the curve for different velocities may follow 
the fact that due to the downward position of the fault part QR and since the 
fault movement is dip-slip type then all the planar fault parts of the nonplanar 
fault are situated in downward direction. 
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Fig. 4 Variation of rate of displacement in z3 direction against z2 for several values of 
creep velocity (a) w1 across PQ, (b) w2 across QR and (c) w3 across RS 

 
 

 

5.3 Effect of depth of the fault from the free surface: 

 
Figure 6 (a) and (b) illustrate the impact of depth of the fault parts PQ 
from the free surface and depth of the fault part QR from PQ on rate of 
displacement. It has been examined that the rate of displacement increases 
with diminishing value of the depth r1 across PQ. For y2 > 0, it increases and 
attains maximum value. After attaining maximum value, rate of v3 decreases 
towards zero. Also rate of displacement increases with diminishing value of 
depth r2 across QR from the fault part PQ. But there is a very small difference. 
The cause behind this behavior may follow the fact that as the 2nd planar 
fault part QR of the nonplanar fault lie in downward position due to dip-slip 
movement of the fault. 
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Fig. 5 Variation of rate of stress γ23 against z2 for several values of creep velocity (a) w1 
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The effect of depth across the first planar fault part PQ of the nonplanar 
fault on rate of γ23 has been described in Fig. 7. It is reported from this figure 
that the increases of depth from the free surface causes decrease in the rate of 
γ23. It may be due to the reason that as if we go in the downward from the 
earth’s surface then the effect of ground movement with be diminishing. The 
rate of γ23 accumulates maximum value near y2 = 0 and after that it releasing 
all the stresses and going towards zero. 

 
5.4 Effect of time of occurrence of the fault movement: 

Fig. 8 described the impact of time of occurrence of fault movement on rate 
of change of displacement. It shows that the rate of displacement due to the 
nonplanar fault movement is increases with time. The variation of strain com- 
ponent e22 with time has been illustrated in Fig. 9. This figure shows that 
when the fault movement occur then maximum strain accumulated and after 
that all the accumulated strain releases with time. The releasing amount of 
energy effect on the ground which can be a cause of next major earthquake. 

 
5.5 Effect of fractional order (α): 

Rate of change of stress component (γ23) for dip-slip movement with time (t1 
in year) for different values of the order of fractional derivative α has been 
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Fig. 6 Variance of rate of displacement for different values of (a) depth r1 from the free 
surface across the part PQ and (b) depth r2 across the part QR from PQ. 
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Fig. 7 Variance of rate of γ23 for different values of depth r1 from the free surface across 
the part PQ 

 

 

plotted in Fig. 10. For y2 > 0, γ23 increases with time and also it increases 
with expanding value of fractional order derivative (α). It indicates that this 
fractional order has a significant impact on the rate of change of γ23. 

 
6 Comparison 

In this present model, the fault is taken as nonplanar fault which is intercon- 
nected by three planar parts. Comparing this study with Mahato et. al (2022 
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Fig. 9 Variation of strain (e22) with time (t) of occurrence of fault movement 
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calculus method has been observed, it is found that the displacement (v3) 
due to movement across nonplanar fault is more than planar fault. It is also 
obtained that a huge amount of stress accumulated if the fault model is non 
planar which indicates that if the fault will be nonplanar then the effect on 
the ground is more than the planar fault. From this comparative study, it is 
concluded that if in a certain place a nonplanar fault movement occur then 
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the huge amount of accumulated stress in aseismic period will be released in 
seismic period which effects more on the neighbourhood of the fault plane. 

 

 
7 Conclusion 

The present work advances the theoretical knowledge regarding the effect of 
non-planar fault geometries on earthquake mechanics. We have introduced 
a method to observed a non-planar earthquake fault geometries using a few 
parameters. The non-planar fault surfaces are connected with three planar 
parts. By expanding the relation of displacement, stress and stain components 
with y2 axis across different planar parts of the non-planar fault from a planar 
fault, this study allows for the interpretation of complex fault geometry and its 
impact on displacement and stress-stain components. The following outcomes 
of the present study are encapsulated below: 

(i) The displacement due to fault movement in dip direction discourage with 
increasing value of inclinations. If the fault is vertical then the displacement 
due to the fault movement is less than the fault with inclined angle. 

(ii) The impact of inclination on stress component (γ23) has an amplifying 
effect. If the inclination across the fault increases then the accumulation of 
stress also increases. So, if the fault is vertical with the free surface then 
a huge amount of stress will be accumulated which may help to occur a 
indestructible earthquake. 

(iii) The velocity of the fault movement has an decaying effect on displacement 
and stress components. If the velocity of the fault movement increases then 
the fault displace more with a high rate of accumulation stress. 

(iv) The displacement and accumulated stress are decreases with increasing 
values of depth. 

(v) The accumulated stress releases with time and this releases amount of 
stress caused displacement due to fault movement. 

(vi) The fractional order derivative (α) has been considered in the range 0 < 
α < 1. The effect on displacement and stress-strain accumulation of a 
fractional model is more prominent than the integer model. 

This model can be extended for various geological scenarios, including sur- 
face breaking/locked faults, facilitating the analysis of stress and strain distri- 
bution. Also the medium can be chosen as a viscoelastic half-space of Burger’s 
Rheology or a layered media, overlying a viscoelastic half-space. The mathe- 
matical models of nonplanar faults emerge as a promising avenue for future 
research in this field. 
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