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ABSTRACT: In this paper, we introduce the new concept in domination theory. A dominating set 𝐷 ⊆

𝑉(𝐺) is a coregular split dominating set if the induced subgraph < 𝑉 − 𝐷 > is regular and disconnected. 
The minimum cardinality of such a set is called a coregular split domination number and is denoted by  
𝛾 (𝐺). Also we study the graph theoretic property of 𝛾 (𝐺) and many bounds were obtained interms 
of 𝐺 and its  relationship with other domination parameters were found. 
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1. INTRODUCTION 

    All graphs considered here are simple and without isolated vertices. Let 𝐺 = (𝑉, 𝐸) be a graph with 
|𝑉| = 𝑃 and  |𝐸| = 𝑞. We denote < 𝑉 − 𝐷 > to denote the subgraph induced by the set of vertices of 𝐷 
and 𝑁(𝑣) and 𝑁[𝑣] denote the open and closed neighborhood of a vertex 𝑣, respectively. Let deg (𝑣) be 
the degree of a vertex 𝑣 and as usual 𝛿(𝐺) the minimum degree and ∆(𝐺) maximum degree. In general 
we follow the notation and terminology of Harary [2]. 

    A vertex cover in a graph 𝐺 is a set of vertices that covers all the edges of 𝐺. The vertex covering 
number ∝ (𝐺) is a minimum cardinality of a vertex cover in 𝐺. An edge cover of a graph 𝐺 without 
isolated vertices is a set of edges of 𝐺 that covers all the vertices of 𝐺 .The edge covering number 𝛼 (𝐺) 
is a minimum cardinality of a edge cover in 𝐺.  

    A line graph 𝐿(𝐺) is the graph whose vertices corresponds to the edges of 𝐺 and two vertices in 𝐿(𝐺) 
are adjacent if and only if the corresponding edges in 𝐺 are adjacent.  

    A block graph 𝐵(𝐺) is the graph whose set of vertices is the union of set of blocks of 𝐺 in which two 
vertices  are adjacent if and only if the corresponding blocks of 𝐺 are adjacent.  
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    A graph is r-regular when all its vertices have degree  𝑟, namely △ (𝐺) = 𝛿(𝐺) = 𝑟. We begine with 
standard definitions from domination theory. 

    A set 𝐷 ⊆ 𝑉 is a dominating set of 𝐺 if for every vertex  𝑣 ∈ 𝑉 − 𝐷, there exists a vertex 𝑢 ∈ 𝐷 such 
that 𝑣 and 𝑢 are adjacent. The minimum cardinality of a dominating set in 𝐺 is the domination number 
and denoted by   𝛾(𝐺). For comprehensive work on the subject has been done in [3]. 

   A dominating set 𝐷 ⊆ 𝑉(𝐺)of a graph 𝐺 = (𝑉, 𝐸) is called a connected dominating set if the induced 
subgraph < 𝐷 > is connected. The connected domination number 𝛾 (𝐺) of 𝐺 is the minimum cardinality 
of a connected dominating set of 𝐺 see [4]. 

   A dominating set 𝐷 ⊆ 𝑉(𝐺) is a total dominating set of a graph 𝐺 if the induced graph < 𝐷 > does not 
contain an isolated vertex. The total domination number 𝛾 (𝐺) of 𝐺 is the minimum cardinality of a total 
dominating set of 𝐺. The total domination in graph was introduced by Cockayne et al.[1] in 1980. 

   A dominating set 𝐷 ⊆ 𝑉(𝐺) is a cotatal dominating set if the induced subgraph < 𝑉 − 𝐷 > has no 
isolated vertices. The cototal domination number 𝛾 (𝐺) of 𝐺 is the minimum cardinality of cototal 
dominating set of 𝐺. 

    A dominating set 𝐷of 𝐺 is called split dominating set if the induced subgraph < 𝑉 − 𝐷 >is 
disconnected. The split domination number is 𝛾 (𝐺) of a graph 𝐺 is the minimum cardinality of a split 
dominating set of 𝐺. 

    A dominating set 𝐷 of 𝐺 is called strong split dominating set of 𝐺 if  < 𝑉 − 𝐷 > is totally disconnected 
with at least two vertices. The strong split domination number 𝛾 (𝐺) of a graph 𝐺 is the minimum 

cardinality of a strong split dominating set of 𝐺[5].  

     A dominating set 𝐷 of 𝐺 is a global dominating set if it is also dominating set of  �̅�. A 
minimal cardinality of global dominating set is the global domination number and is denoted by 
𝛾 (𝐺)[7]. 

    A dominating set 𝐷 of  𝐿(𝐺) is a global dominating set if it is also dominating set of 𝐿(�̅�). A 
minimal cardinality of 𝐷 is a global domination number of  𝐿(𝐺) and denoted by 𝛾 (𝐺) see[6]. 

2. RESULTS 

     We develope the following results for some standard graphs. 

Theorem 1:  a]  For any path 𝑝  with 𝑝 ≥ 2 vertices,  

                           𝛾 𝑝 = . 

                     b]  For any star 𝑘 ,  with 𝑝 ≥ 2 vertices, 

                           𝛾 𝑘 , =1. 
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Theorem 2: For any connected (𝑝, 𝑞) graph 𝐺 with 𝑝 ≥ 3, then 

                             𝛾 (𝐺) + 𝛾(𝐺) ≤ 𝑝 . 

Proof: Let 𝑉 = { 𝑣 , 𝑣 , … … … … , 𝑣 } ⊆ 𝑉(𝐺) be the set of all non end vertices in  𝐺. The 𝑉 ⊆ 𝑉  forms 
a 𝛾 − 𝑠𝑒𝑡 of 𝐺. Let 𝑉 = { 𝑣 , 𝑣 , … … … … . . , 𝑣 } ⊆ 𝑉  where every 𝑣 ∈ 𝑉  is adjacent to end vertices. 
Further 𝑉 = { 𝑣 , 𝑣 , … … … . . . . , 𝑣 } ⊆ 𝑉  be the set of vertices with maximum degree. Suppose <

𝑉(𝐺) − 𝑉 ∪ 𝑉 > is disconnected and ∀ 𝑣 𝜖 [𝑉(𝐺) − {𝑉 ∪ 𝑉 }] has same degree < 𝑉 ∪ 𝑉 > forms a 
𝛾 − 𝑠𝑒𝑡. Otherwise there exists a set 𝐴 = { 𝑣 , 𝑣 , … … … … , 𝑣 } of vertices which are neighbors of some 
vertices in 𝑉  . Now < 𝑉(𝐺) − 𝑉 ∪ 𝑉 ∪ 𝐴 >  is disconnected with isolated vertices of cardinality at least 
two. Then  |𝑉 ∪ 𝑉 ∪ 𝐴| + |𝑉 | ≤ 𝑉(𝐺), which gives  𝛾 (𝐺) + 𝛾(𝐺) ≤ 𝑝 . 

 The following result gives an upper bounds for 𝛾 (𝐺) in terms of  𝛾  and  𝛾  of  𝐺. 

Theorem 3: For any connected (𝑝, 𝑞) graph 𝐺 with ≥ 3 , then 

                           𝛾 (𝐺) ≤ 𝛾 + 𝛾   and  𝐺 ≠ 𝑊   (𝑃 > 5).  

Proof: Let 𝑉 = { 𝑣 , 𝑣 , … … … … , 𝑣 } be the vertex set of 𝐺. Now for the graph 𝐺 ≠ 𝑊  with 𝑝 ≥ 4 , 

suppose 𝑝 ≤ 4 the 𝛾 + 𝛾 = 3 = 𝛾 (𝐺) and result holds. Further if 𝑃 > 5, |𝛾 + 𝛾 | = 3 and 

 𝛾 𝑊 = + 1 > |𝛾 +  𝛾 |. Hence 𝐺 ≠ 𝑊  with  𝑃 > 5. Now let 𝐴 = { 𝑣 , 𝑣 , … … … … , 𝑣 } ⊆ 𝑉(𝐺) 

suppose for every 𝑣 ∈ {𝑉(𝐺) − 𝐴} is adjacent to at least one vertex of  𝐴. If < 𝐴 > has no isolated vertices 
then 𝐴 itself is a total dominating set of  𝐺. Otherwise let 𝑣 ∈ {𝑉(𝐺) − 𝐴} and if {𝐴} ∪ {𝑣} has no isolated 
vertex. Clearly {𝐴} ∪ {𝑣} is a minimal total dominating set of  𝐺. Let  𝐴 = { 𝑣 , 𝑣 , … … … . … , 𝑣 }  be the 
set of all end vertices in 𝐺. 𝐴 = { 𝑉(𝐺) − 𝐴 } be the set of all nonend vertices in 𝐺. Suppose there exists a 
minimal set of vertices such that 𝑁[𝑣 ] = 𝑉(𝐺) ∀ 𝑣 ∈ 𝐴  , 1 ≤ 𝑖 ≤ 𝑛 then  𝐴  forms a minimal dominating 
set of 𝐺. Further if  𝐴 = { 𝑉(𝐺) − 𝐴 } has exactly one component then 𝐴  itself is a connected dominating 
set of 𝐺. Suppose 𝐴  has more than one component then attach the minimum set of vertices. 𝑆 = 𝐴 ∪

{𝑢, 𝑤} which are in 𝑢 − 𝑤 path, ∀ 𝑢, 𝑤 ∈ {𝑉(𝐺) − 𝐴 }. Hence 𝑆 is a minimal connected dominating set of 
𝐺. Further let 𝐴 = {𝑣 , 𝑣 , … … … . , 𝑣 } be the set of all nonend vertices suppose there exists a minimal 
dominating set 𝑆 such that the distance between the two vertices of 𝑆 is at least two clearly  there exists 
more than one component and each component in < 𝑉 − 𝑆 > is regular forms 𝛾 − 𝑠𝑒𝑡. Thus |𝑆| ≤

|𝐴 | + |𝐴|. Hence  𝛾 (𝐺) ≤ 𝛾 + 𝛾  . 

         Now  the next theorem gives lower bound on the coregular split domination number of graph (𝐺). 

Theorem 4: For any connected (𝑝, 𝑞) graph 𝐺 with  𝑝 ≥ 3 , then 

                            𝛾 (𝐺) ≥ 𝛾 (𝐺) − 1. 

Proof: Let 𝐸 = { 𝑒 , 𝑒 , … … … … , 𝑒 } be the set of edges in 𝐺. Now consider 𝐸 = { 𝑒 , 𝑒 , … . . … , 𝑒 } ⊆

𝐸(𝐺) be the set of edges with maximum edge degree and 𝐸 = { 𝑒 , 𝑒 , … . . … , 𝑒 } ⊆ 𝐸(𝐺) be the set of 

edges with minimum edge degree. Suppose 𝐸 ⊆ 𝐸  and 𝐸 ⊆ 𝐸  ∀ 𝑣 ∈ [𝑉[𝐿(𝐺)] − {𝐸 ∪ 𝐸 }] is 
adjacent to at least one vertex of {𝐸 ∪ 𝐸 } and {𝐸 ∪ 𝐸 }. Since each edge of 𝐺 is a vertex in 𝐿(𝐺), 
then  {𝐸 ∪ 𝐸 } is a global dominating set of 𝐿(𝐺). Further let 𝐷 = {𝑣 , 𝑣 , … . … … . , 𝑣 } be the set of 
vertices in 𝐺, such that [𝑉(𝐺) − 𝑁(𝐷)] is regular and which gives more than one component. Then 𝐷 
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forms a minimal coregular split dominating set of 𝐺. Thus |𝐷| ≥ |𝐸 ∪ |𝐸 | − 1| hence 𝛾 (𝐺) ≥

𝛾 (𝐺) − 1. 

Theorem 5: For any connected (𝑝, 𝑞) graph 𝐺 with 𝑃 ≥ 3 ,then 

                           𝛾 (𝐺) ≥ 𝑞 −  ∝ (𝐺)+𝛾 (𝐺) − 1. 

Proof: Let 𝐴 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } be set of all nonend vertices in 𝐺. Let 𝐵 = {𝑣 , 𝑣 , … … . . , 𝑣 } ⊆ 𝐴 
be a set of vertices with maximum degree. 𝐵 = {𝑣 , 𝑣 , … … . . 𝑣 } ⊆ 𝐴 be set of vertices with minimum 
degree in 𝐺.The distance between two vertices of 𝐵  and 𝐵  is at most 2. Hence {𝐵 ∪ 𝐵 } is 𝛾- set if 
[𝑉(𝐺) − {𝐵 } ∪ {𝐵 }] disconnected and having vertices with same degree forms a 𝛾 − 𝑠𝑒𝑡. Let 𝐵 =

{ 𝑒 , 𝑒 , … … . . , 𝑒 } be the set of all end edges. Suppose 𝐵 = {𝑒 , 𝑒 , … … … , 𝑒 } ⊆ 𝐸(𝐺) − 𝐵 be the set of 
edges such that  dist (𝑒 , 𝑒 ) ≥ 2  1 ≤ 𝑖 ≤ 𝑛,  1 ≤ 𝑗 ≤ 𝑘, then 𝐵 ∪ 𝐹,where 𝐹 ⊆ 𝐵  be the minimal set of 

edges which covers all the vertices in 𝐺, such that |𝐵 ∪ 𝐹| =∝ (𝐺). Further let 𝑆 = {𝑣 , 𝑣 , … . … . . , 𝑣 } ⊆

𝑉(𝐺) and 𝑆 ⊆ 𝑉(�̅�). If  𝑁[𝑆] = 𝑉(�̅�). Then 𝑆 is dominating set for 𝐺 and (�̅�). Therefore 𝑆 forms a global 
dominating set of 𝐺. Now, we have |𝐵 ∪ 𝐵 | ≤ 𝑞 − |𝐵 ∪ 𝐹| + |𝑆| − 1 , which gives  𝛾 (𝐺) ≥ 𝑞 −

 ∝ (𝐺)+𝛾 (𝐺) − 1. 

     We establish the relationship between, split domination total domination with coregular split domination 
number in the following theorem. 

Theorem 6: For any connected (𝑝, 𝑞) graph 𝐺 with  𝛾  is 1 −regular then 

                                 𝛾 (𝐺) ≤ 𝛾 (𝐺) + 𝛾 (𝐺) − 1  and 𝐺 ≠ 𝑊   (𝑃 > 5). 

Proof: Let 𝐴 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } ⊆ 𝑉(𝐺) be the set of all end vertices in 𝐺 and  𝐴 = 𝑉(𝐺) − 𝐴 . 
Suppose there exists vertex set 𝐹 ⊂ 𝐴  such that 𝐷 = [𝑉(𝐺) − 𝐹] is a dominating set of 𝐺. Hence < 𝐷 > 
has more than one component with same degree than 𝐷 forms a 𝛾 − 𝑠𝑒𝑡. Suppose there exists set of 
vertices 𝐶 ⊆ 𝐴  where 𝐶 ∪ 𝐴  covers all vertices in 𝐺 and if the subgraph < 𝑉(𝐺) − {𝐶 ∪ 𝐴 } > does not 
containany isolated vertex 𝐶 ⊂ 𝐴  itself is a cototal dominating set of 𝐺.Otherwise if there exists a vertex 
𝑣 ∈ [𝑉(𝐺) − {𝐶 ∪ 𝐴 } with deg(𝑣) = 0. Then 𝐶 ∪ 𝐴 ∪ {𝑣} forms a minimal 𝛾 − 𝑠𝑒𝑡 of 𝐺. Further let  
𝐵 = {𝑣 , 𝑣 , … … . , 𝑣 } ⊆ 𝑉(𝐺) be the set all nonend vertices in 𝐺. Then 𝐵 ⊆ 𝐴  forms a minimal 𝛾 −

𝑠𝑒𝑡 of 𝐺. If < 𝑉 − 𝐷 > is disconnected then 𝐵  forms a split dominating set of 𝐺.Hence  |𝐷| ≤ |𝐵 | +

|𝐶| ∪ 𝐴 ∪ {𝑣} − 1 and 𝛾 (𝐺) ≤ 𝛾 (𝐺) + 𝛾 (𝐺) − 1. 

Theorem 7: For any non-trivial tree 𝑇 with 𝑝 ≥ 2, then 𝛾 (𝑇) = 𝛼 (𝑇) if and only if 𝛾   is zero regular.  

Proof : Suppose 𝛾 (𝑇) = 𝛼 (𝑇) and 𝛾 − 𝑠𝑒𝑡 is not zero regular. Let 𝐷 = {𝑣 , 𝑣 , … … … . . , 𝑣 }be a 
dominating set of 𝑇 such that the distance between two vertices of 𝐷 be at most three. If < 𝑉 − 𝐷 > is 
disconnected we consider the following cases. 

Case1: Assume there exists at least one edge 𝑒 ∈ 𝑉(𝑇) − 𝐷  which is a component of disconnected <

𝑉(𝑇) − 𝐷 >. Then 𝛾  is not zero regular, a contradiction. 

Case2: Assume there exists a vertex 𝑣 ∈ 𝛾 − 𝑠𝑒𝑡 and    𝑣 ∉ 𝛼 − 𝑠𝑒𝑡. Then there exists 𝑁(𝑣) = 𝑢. Such 
that an edge 𝑢𝑣 ∈ {𝑉(𝑇) − 𝐷} a contradiction.  
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Conversly, suppose  𝛾 (𝑇) = 𝛼 (𝑇) , and  𝛾 (𝑇)  is zero regular . Let 𝐷 = {𝑣 , 𝑣 , … . … … . . , 𝑣 } be a 
set of vertices such that the distance between two vertices of 𝐷 be at most two. Hence 𝑁(𝑢) ∪ 𝑁(𝑣) =

𝜑,∀ 𝑢, 𝑣 ∈ 𝐷 and edge of 𝑇 covered  by the set 𝐷. Clearly |𝐷| = 𝛼 (𝑇) since 𝐷 is minimal dominating set 
of 𝑇 and < 𝑉 − 𝐷 > is disconnected with deg (𝑣)=0 ∀ 𝑣 ∈ < 𝑉 − 𝐷 >. Then 𝐷 is also 𝛾 − 𝑠𝑒𝑡 which is   
zero regular. Hence 𝛾 (𝑇) = 𝛼 (𝑇). 

     In the following Theorem  , we establish the upper bound for  𝛾 (𝑇) interms of vertices of  graph 𝐺. 

Theorem 8: For any non-trivial tree 𝑇 with 𝑝 ≥ 2, then 𝛾 (𝑇) ≤ 𝑝 − 𝑚 . Where  𝑚 is the number of end 
vertices in 𝑇. 

Proof : Let 𝐴 = {𝑣 , 𝑣 , … . … … . . . , 𝑣 } ⊆ 𝑉(𝑇) be the set of all end vertices in 𝑇 with |𝐴| = 𝑚. Let 𝐷 =

{𝑣 , 𝑣 , … . … … . . . , 𝑣 } be a dominating set of 𝑇.Such that the distance between two vertices of 𝐷 is at most 
three. If < 𝑉 − 𝐷 > has more than one component. Then vertices of each component have same degree and 
all component are also have same degree. Then 𝐷 is 𝛾 − 𝑠𝑒𝑡 of a tree 𝑇. So that |𝐷| = 𝑝 − |𝐴| and gives 
𝛾 (𝑇) ≤ 𝑝 − 𝑚. 

Theorem 9: For any non-trivial tree 𝑇 with  𝑝 ≥ 2, then 𝛾 (𝑇) = 𝛾 (𝑇). 

Proof: Let 𝐻 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } be set of all vertices in 𝑉(𝑇). Let 𝐻 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } be set 
of all nonend vertices adjacent to end vertices. 𝐻 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } be set of all nonend vertices  
which are not adjacent to end vertices. Let there exists 𝐻 ⊆ 𝐻  such that 𝐷 = {𝐻 } ∪ {𝐻 } ⊆ 𝑉(𝑇). 
Where ∀ 𝑣 ∈ 𝑉(𝑇) − 𝐷 is adjacent to at least one vertex of 𝐷. Hence 𝐷 is a minimal dominating set of 𝐺. 
Further if ∀ 𝑣 ∈ < 𝑉 − 𝐷 > deg(𝑣 ) = 0 with at least two vertices. Hence 𝐷 is a 𝛾 − 𝑠𝑒𝑡 of 𝐺. 
Simillarly by definition of strong split dominating set the subgraph  < 𝑉 − 𝐷 >is a null set with at least 
two vertices . Hence 𝐷 is also a 𝛾 − 𝑠𝑒𝑡 of 𝐺. Clearly 𝛾 (𝑇) = 𝛾 (𝑇). 

Further if there exists a set 𝐸 = {𝑒 , 𝑒 , … . … … . . . , 𝑒 } be edges in < 𝑉 − 𝐷 > and each component of   𝑉 −

𝐷 is 𝐾 . Then 𝐷 is a 𝛾 − 𝑠𝑒𝑡 but not  𝛾 − 𝑠𝑒𝑡. For equality if 𝐴 = {𝑣 , 𝑣 , … . … … . . , 𝑣 } be the set of 
vertices which are 𝑁(𝑣 ), ∀  𝑣 ∈ 𝐵 where 𝐵 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } such that {𝐴} ∪ {𝐵} forms the 
component as 𝐾   in < 𝑉 − 𝐷 > . Then ∀𝑣 ∈ [{𝑉 − 𝐷} − {𝐴}] or [{𝑉 − 𝐷} − {𝐵}] is an isolate. Thus 
either {𝐷} − {𝐴} or {𝐷} − {𝐵} is a  𝛾 − 𝑠𝑒𝑡 and also a  𝛾 (𝑇) − 𝑠𝑒𝑡 of a tree. Hence 𝛾 (𝑇) = 𝛾 (𝑇). 

Theorem 10: For any non-trivial tree 𝑇 with  𝑝 ≥ 3, then 

                                         𝛾 (𝑇) + 3 ≥ . 

Proof: Let 𝑉 = {𝑣 , 𝑣 , … . … … . . . , 𝑣 } be vertex set of 𝑇 and 𝐸 = {𝑒 , 𝑒 , … . … … . . . , 𝑒 } be edge set of 𝑇. 
And 𝐴 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } ⊆ 𝑉(𝑇) be set of all nonend vertices which are not adjacent to end 
vertices. If the distance between the two vertices of 𝐴  and 𝐴  is at most 2. Suppose there exists a set 𝐴 ⊆
𝐴  hence 𝑆 = [𝑉(𝑇) − {𝐴 ∪ 𝐴 }] is a dominating set of 𝑇 with the property that < 𝑆 > is totally 
disconnected . Then 𝑆 is a 𝛾 − 𝑠𝑒𝑡 of 𝑇. Let 𝐻 = {𝐴 ∪ 𝐴 } and ∀ 𝑣 ∈ 𝑉(𝑇) − 𝐻 is adjacent to at least 
one vertex of 𝐻 then 𝐻 is dominating set of 𝑇 and < 𝐻 > is connected. Hence 𝐻 is 𝛾 − 𝑠𝑒𝑡 of a tree 𝑇. 
Since every vertex of 𝛾 − 𝑠𝑒𝑡 is incident with the edges of 𝑇 then (𝐸 − 𝐻)/2 ≤ {𝑆 + 3}, implies that 

|𝑆| + 3 ≥
| | | |

  and gives , 𝛾 (𝑇) + 3 ≥ . 

       Next theorem gives upper bound for 𝛾 (𝑇). 
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Theorem11: For any non-trivial tree 𝑇 with  𝑝 ≥ 3, then 

                                         𝛾 (𝑇) ≤ 𝛾 [𝐵(𝑇)] + 𝛿(𝐺). 

Proof: Let 𝑉 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } be the set of end vertices of  𝑉(𝑇). 𝑉 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } be the 
set of vertices adjacent to 𝑉  there exists 𝑉 = {𝑉(𝑇) − 𝑉 ∪ 𝑉 } then 𝑆 = {𝑉 ∪ 𝑉 } is a minimal 
dominating set of 𝑇. Suppose there exists a  𝑁(𝑉 ) ∩ 𝑁(𝑉 ) = ∅ ∀ 𝑉 , 𝑉 ∈ 𝑆. Hence each edge of 𝑇covers 
by the set 𝑆 and  < 𝑉 − 𝑆 > is disconnected such that deg(𝑣 ) = 0 ∀ 𝑣 ∈< 𝑉 − 𝑆 >  then 𝑆 is a 𝛾 − 𝑠𝑒𝑡 
which is zero regular. Further let 𝐷  be dominating set of block graph 𝐵(𝑇) of a tree 𝑇 and 𝐴 =
𝑉[𝐵(𝑇) − 𝐷 ] such that 𝐷 ⊆ 𝐴  and  < 𝐷 ∪ 𝐷 > has no isolated vertex . Then {𝐷 ∪ 𝐷 } is 𝛾 − 𝑠𝑒𝑡 of 
𝑇. Let 𝑣 be a point of minimum degree 𝛿(𝑇). Hence |𝑆| ≤ |𝐷 ∪ 𝐷 | + |𝑣| which gives, 𝛾 (𝑇) ≤
𝛾 [𝐵(𝑇)] + 𝛿(𝐺). 

          In the following two lemmas we have the sharp bound attained to 𝛾  by considering each block of 
𝐺 which is complete graph  𝐾  and 𝐾 . 

Lemma 1. If 𝐺 has exactly one nonend block 𝐾  and all vertices of 𝐾  are incident with blocks which are 
𝐾  with 𝑚 ≥ 𝑛 (or) 𝑚 < 𝑛. Then  𝛾 = 𝑛. 

Proof: Let 𝐾  be a nonend block of 𝐺 with vertex set  𝐷 = {𝑣 , 𝑣 , … . … … . . . , 𝑣 }. Suppose all vertices of 
𝐾  are incident with blocks which are 𝐾 . We consider the following cases. 

Case1: Suppose each vertex of 𝐾  is incident with 𝐿 number of blocks which are complete graphs 𝐾  with 
𝑚 ≥ 𝑛. Then 𝐷 is a dominating set of 𝐺. Also the induced subgraph < 𝑉(𝐺) − 𝐷 > is disconnected and 
𝑚 − 1 regular. Hence |𝐷| = 𝛾 (𝐺) , which is also equal to 𝑛. Clearly 𝛾 = 𝑛. 

Case2: Suppose each vertex of 𝐾  is a cut vertex and incident with 𝐿 number of blocks which are 𝐾  with 
𝑚 < 𝑛. Then the induced subgraph < 𝑉(𝐺) − 𝐷 > is again disconnected and 𝑚 − 1 regular. Since ∀ 𝑣 ∈
𝐷 is adjacent to at least one vertex of 𝑉(𝐺) − 𝐷, then 𝐷 is a 𝛾 − 𝑠𝑒𝑡 of 𝐺 and |𝐷| = 𝑛. Clearly 𝛾 = 𝑛.  

         From the above lemma we concluded that, if there exists at least one block which is either 𝐾   or 
𝐾  in 𝐿  number of blocks . Then there does not exists 𝛾 − 𝑠𝑒𝑡. 

Lemma 2: If 𝐺 has exactly one cut vertex 𝐶 incident with blocks which are 𝐾  , 𝑛 ≥ 2, then 𝛾 = 𝐶. 

Proof: Suppose 𝐺 has exactly one cut vertex 𝑣 which is incident with 𝑚 number of 𝐾 (𝑛 ≥ 2) blocks. 
Then every vertex of {𝐺 − 𝑉} is adjacent to 𝑣.Thus {𝑣} is a 𝛾 − 𝑠𝑒𝑡 of 𝐺 and  < 𝐺 − 𝑉 > is disconnected 
with 𝑚  numbere of 𝐾  blocks. Hence each component of < 𝐺 − 𝑉 > is 𝐾  regular and {𝑣} is a  𝛾 −
𝑠𝑒𝑡 of  𝐺. Since 𝑣 is a cu vertex then  𝛾 = 𝐶. 

Theorem12: For any graph 𝐺 with 𝐶 cut vertices 𝛾 = 𝐶 if and only if 𝐺 has exactly one nonend block 
𝐾   incident with complete blocks which are  𝐾 . 

Proof: Suppose 𝛾 = 𝐶. Let 𝐻 = 𝐵 , 𝐵 , … … … . , 𝐵  be the set of 𝑛 blocks of 𝐺. Let 𝐴 =

{𝐵 , 𝐵 ,. . . , 𝐵 } be the end blocks in 𝐺. Such that 𝐾 = 𝐻 − 𝐴  which is nonend block of 𝐺. Let 
{𝑣 , 𝑣 , … . … … . . . , 𝑣 } = 𝑉[𝐾 ]. Suppose 𝐿 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } ⊆ 𝑉[𝐾 ] be the set of cut vertices. 
We consider the following cases. Let 𝐷 be a 𝛾 − 𝑠𝑒𝑡 of 𝐺. 

Case1: Suppose |𝐿 | cut vertices are incident with blocks which are 𝐾 . Then 𝐿  is dominating set of 𝐺. 
But < 𝑉(𝐺) − 𝐿 > is not regular. Hence  𝛾 = 𝐿  , contradiction. 

Case 2: Suppose {𝑣 , 𝑣 , … . … … . . . , 𝑣  } ∈ 𝐿  are incident with 𝐾  blocks. Then {𝐿 } is a dominating 
set of 𝐺. Further < 𝑉(𝐺) − {𝑣 , 𝑣 , … . … … . . . , 𝑣 } > is not a regular, a contradiction.  
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Case 3: Suppose the number of cut vertices |𝐿 | > |𝑉[𝐾 ] − 𝐿  |. Then 𝐿  is a dominating set of 𝐺 and <
𝑉[𝐺] − 𝐿 >  is not regular , a contradiction .  

Conversly, suppose 𝐺 has {𝐿 } = 𝐶 cut vertices and exactly one nonend block 𝐾  incident with complete 
blocks  𝐾 . Then {𝐿 } is a dominating set of 𝐺. Further < 𝑉(𝐺) − 𝐿 > is regular with more than one 
component. Clearly 𝐷 forms a 𝛾 − 𝑠𝑒𝑡. Hence |𝐷| = |𝐿 | gives  𝛾 = 𝐶.  

Theorem13: For any graph 𝐺 with 𝐶 cut vertices every nonend vertex of 𝐺 is adjacent with at least one end 
vetex then 𝛾 = 𝐶. 

Proof: For necessary condition, let 𝑉 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } ⊆ 𝑉(𝐺) be set of all end vertices in 𝐺. Let 
𝑉 ⊆ {𝑉(𝐺) − 𝑉 } forms a 𝛾 − 𝑠𝑒𝑡 of 𝐺. And let 𝐴 = {𝑣 , 𝑣 , … . … … . . . , 𝑣 } ⊆ 𝑉  be the set of cut vertices 
of 𝐺. Suppose 𝑉 = {𝑣 , 𝑣 , 𝑣 , … … . , 𝑣 } ⊆ 𝑉   be the set of nonend vertices. Then there exists at least one 
vertex 𝑣  which is not adjacent to an end vertex . Since 𝑣 ∈ 𝑁(𝑣 )  and 𝑣 ∉ 𝑉  and 𝑣 ∈ 𝑉  then < 𝑉(𝐺) −

𝑉 > is disconnected and we consider the following cases. 

Case1: Suppose 𝐺 is a tree. Then 𝐴 = {𝑣 , 𝑣 , … . . . , 𝑣 } be the set of all nonend vertices which are 
cutvertices. Suppose there exists 𝑉 ⊆ 𝐴 which are adjacent to end vertices of 𝑇. Now assume there exists 
at least one vertex 𝑣 ∈ 𝑁(𝑉 ) and 𝑣 ∉ 𝑉  , since 𝑣  is a cutvertex and < 𝑉(𝑇) − 𝑉 > is disconnected 
and regular, then |𝑉 | > |𝑉 | which gives,  𝛾 ≠ 𝐶. 

Case 2: Suppose 𝐺 is  not a tree . Then there exists at least one block which is cycle. Let 𝑣 be a vertex 
which is not incident with an end vertex and 𝑣 ∈ 𝐷 then < 𝑉 − 𝑉 > is not regular hence 𝐷 is not a 𝛾 −
𝑠𝑒𝑡 of 𝐺. Then there exists at least one vertex 𝑢 ∈ {𝑉(𝐺) − 𝑉 } such that < 𝑉(𝐺) − {𝑉 ∪ 𝑢} > is regular 
and 𝛾 − 𝑠𝑒𝑡 of 𝐺. Hence |𝑉 ∪ {𝑢}| > |𝐶|. 

For sufficient conditions, let every nonend vertex of 𝐺 is adjacent with at least one end vertex. Then 𝑉 =
{𝑉(𝐺) − 𝑉 } is a dominating set of 𝐺. Also < 𝑉(𝐺) − 𝑉 > is disconnected and deg(𝑣 ) = 0  ∀ 𝑣 ∈
{𝑉(𝐺) − 𝑉 }. Thus 𝑉  is 𝛾 − 𝑠𝑒𝑡 of 𝐺 . Since every vertex of 𝑉  is a cut vertex , then |𝑉 | = |𝐶|. Clearly 
𝛾 = 𝐶.  
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