

ANALYZING THE EFFECT OF GAIN TIME ON SOFT-TASK

SCHEDULING POLICES IN REAL TIME SYSTEMS

A.V.Thulasi Pratiba1 B.Chandrakala2

[1], PG Student, Embedded Systems, Sri Venkateswara College of Engineering

[2], Assistant Professor, Department of ECE, Sri Venkateswara College of Engineering

tulsi.pratiba@gmail.com

ABSTRACT

The paper is dealing with the effect of gain time on

soft task scheduling in RTOS based application.

RTOS is an operating system that supports real-time

applications and embedded systems by providing

logically correct result within the deadline. In

Multitasking gain time is a key factor which explicit

the difference between the actual time and

maximum time for completion of a process. In some

real time applications, delay in a particular process

may lead to severe effects. In this project work ,

delay in a task is avoided by using an effective

preemptive scheduling and giving importance to

high priority interrupts even though if there is any

pending low priority interrupts on semaphore. As a

prototype demonstration hereby implementing in

the hardware using ARM Processor for an

automobile application. An object tracking system

will be fixed in the vehicle with vehicle-object

distance measurement facility. If an object

approaches the vehicle beyond the minimum

distance limit, then preemptive scheduler will assign

the object interference as a high priority interrupt.

As an immediate response the speed of the vehicle

will be changed by using a control method PWM.

The Pulse width modulating technique will be

initiated automatically by the Processor without any

manual braking system and a heavy alert will be

given to the person to bring concentration in driving.

Keywords: RTOS, ARM Processors, PWM

INTRODUCTION

The embedded systems are sewn into our day-

to-day life in various forms of visible and invisible

manner via many different application areas which

include consumer electronics, medical imaging,

telecommunications, automotive electronics,

avionics, space systems, etc. For instance, the

progress in use of multi-core platforms in embedded

systems has already reached our hands as a form of

mobile phones and related devices with small form

factor. The main purpose of a real-time system is to

produce the required result within strict time

constraints including computational correctness.

In other words, in the physical world the

purpose is to construct a physical effect within a

chosen time-frame. There are several perspectives to

classify real-time systems. Depending on the system

characteristics, a real-time system can be

categorized as hard real-time or soft real-time by

considering factors inside the system and factors

outside the system. As many embedded systems are

used in safety-critical applications, their correct

functionality in the whole system is imperative to

avoid severe consequences. It is estimated that 99%

of produced microprocessors are integrated into

embedded systems. Furthermore, as a result of this

abrupt technological progress, a significant

increment in software complexity and processing

demands of real-time systems is seen.

To cope with the processing demands, silicon

vendors are concentrating on using multi-core

platforms for high-end real-time applications instead

of incrementing processor clock speeds in uni-core

platforms. By the same token, scheduling research

of multi-core architectures offers a broad spectrum

of significant opportunities for real-time system

producers. Research of uni-core and multi-core real-

time scheduling both originated back in late 1960s

and early 1970s, consequential advances were made

in 1980s and 1990s. Still, there is sufficient scope

for research, although uni-core real-time scheduling

is considered reasonably mature to be in industrial

practice. On the other hand, many of well researched

multi-core scheduling techniques are not mature

enough to either be applicable or optimal as much as

currently available uni-core real-time scheduling

techniques. For this reason, reliable simulation

platforms are required to augment the research of

scheduling techniques for real-time embedded

multi-core architectures, which is also coupled with

analytical results that expect guaranteed real-time

administration over the system by the most effective

use of the available processing capability through

employing efficient scheduling policies placed on

the underlying hardware.

Scheduling Paradigm

 In the field of hard real-time systems, the main

goal is to achieve that none of the so-called hard

tasks in the system ever fails to meet its temporal

requirements, usually defined in terms of deadlines.

The current practice for achieving this goal is to

adopt a certain scheduling paradigm in the

development of the real-time system. The paradigm

imposes both a particular task model at design time

and a corresponding scheduling policy at runtime,

and then provides the system designer with a formal,

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 5

Page No: 36

mailto:tulsi.pratiba@gmail.com

offline feasibility analysis by which it is possible to

prove whether all hard tasks will be able to meet

their deadlines before the system starts running.

One of the most sound and widespread

paradigms is fixed-priority pre-emptive scheduling.

In this paradigm, the task model requires each hard

task to have some known temporal attributes

(release times, computation times, deadlines, etc.)

and a fixed priority. At runtime, the system always

selects the ready task with the highest priority for

execution in a pre-emptive manner. Hard real-time

systems may also include some other tasks without

hard or strict deadlines, which are normally referred

to as soft tasks. The scheduling paradigm typically

considers that the execution of a soft task produces

some utility value to the system if the task can be

completed before some point in time (related to the

task’s arrival time), after which this value

progressively decreases; in contrast, the utility value

of a hard task instantly drops to zero after reaching

its deadline.

Aim and Scope

The main results of this paper show that, in

general, the fact that hard tasks consume less

execution time than their estimated WCETs (which

in turn produces the availability of gain time)

negatively affects the performance benefit of using

any of the policies under study with respect to

scheduling soft tasks in background. These are also

true even for those policies that are specifically

designed to efficiently reclaim and use gain time.

In nearly all cases, the performance benefit is

significantly reduced as the amount of gain time

increases in the system. Under some conditions, this

performance benefit is so small, or even negative,

that the use of a specific scheduling policy for soft

tasks becomes questionable. The final purpose of

this work is for it to be used as a guide to determine

which scheduling policies for soft tasks are more

appropriate depending on the running conditions of

the system and, specifically, the amount of gain time

that is available at runtime.

As a prototype demonstration we are

implementing in the hardware using ARM Processor

for an automobile application. An object tracking

system will be fixed in the vehicle with vehicle-

object distance measurement facility. If an object

approaches the vehicle beyond the minimum

distance limit, then preemptive scheduler will assign

the object interference as a high priority interrupt.

As an immediate response the speed of the vehicle

will be changed by using a control method PWM.

The Pulse width modulating technique will be

initiated automatically by the Processor without any

manual braking system and a heavy alert will be

given to the person to bring concentration in driving.

LITERATURE SURVEY

Contemporary RTOS

A real-time operating system (RTOS)

supports applications that must meet deadlines in

addition to providing logically correct results. The

paper reviews pre-requisites for an RTOS to be

POSIX and discusses memory management and

scheduling in RTOS. We survey the prominent

commercial and research RTOSs and outline steps

in system implementation with an RTOS. We select

a popular commercial RTOS within each category

of real-time application and discuss its real-time

features. A comparison of the commercial RTOSs is

also presented. We conclude by discussing the

results of the survey and suggest future research

directions in the field of RTOS.A real-time system

is one whose correctness involves both the logical

correctness of outputs and their timeliness.

 It must satisfy response-time constraints or

risk severe consequences including failure. Real-

time systems are classified as hard, firm or soft

systems. In hard real-time systems, failure to meet

response-time constraints leads to system failure.

Firm real-time systems have hard deadlines, but

where a certain low probability of missing a

deadline can be tolerated. Systems in which

performance is degraded but not destroyed by failure

to meet response time constraints are called soft

real-time systems. An embedded system is a

specialized real-time computer system that is part of

a larger system. In the past, it was designed for

specialized applications, but reconfigurable and

programmable embedded systems are becoming

popular. Some examples of embedded systems are:

the microprocessor system used to control the

fuel/air mixture in the carburetor of automobiles,

software embedded in airplanes, missiles, industrial

machines, microwave ovens, dryers, vending

machines, medical equipment, and cameras. We

observe that the choice of an operating system is

important in designing a real-time system.

Designing a real-time system involves

choice of a proper language, task partitioning and

merging, and assigning priorities to manage

response times. Language synchronization

primitives such as Schedule, Signal and Wait

simplify translation of design to code and also

offer portability. Depending upon scheduling

objectives, parallelism and communication may be

balanced. Merging highly cohesive parallel tasks for

sequential execution may reduce overheads of

context switches and inter-task communications.

The designer must determine critical tasks and

assign them high priorities. However, care must be

taken to avoid starvation, which occurs when higher

priority tasks are always ready to run, resulting in

insufficient processor time for lower priority tasks.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 5

Page No: 37

WCET Problem – Overview

The determination of upper bounds on

execution times, commonly called Worst-Case

Execution Times (WCETs), is a necessary step in

the development and validation process for hard

real-time systems. This problem is hard if the

underlying processor architecture has components

such as caches, pipelines, branch prediction, and

other speculative components. The article describes

different approaches to the problem and surveys

several commercially available tools and research

prototypes.

Hard real-time systems need to satisfy stringent

timing constraints, which are derived from the

systems they control. In general, upper bounds on

the execution times are needed to show the

satisfaction of these constraints. Unfortunately, it is

not possible in general to obtain upper bounds on

execution times for programs. Otherwise, one could

solve the halting problem. However, real-time

systems only use a restricted form of programming,

which guarantees that programs always terminate;

recursion is not allowed or explicitly bounded as are

the iteration counts of loops.

EXISTING SYSTEM

The existing system dealing with the effect of

gain time on soft task scheduling in RTOS based

application. RTOS is an operating system that

supports real-time applications and embedded

systems by providing logically correct result within

the deadline. In Multitasking gain time is a key

factor which explicit the difference between the

actual time and maximum time for completion of a

process. In some real time applications, delay in a

particular process may lead to severe effects. In this

project work , delay in a task is avoided by using

an effective preemptive scheduling and giving

importance to high priority interrupts even though if

there is any pending low priority interrupts on

semaphore.

➢ Manual Control

➢ More gain time

➢ No quicker response to the interrupt

➢ No distance measurement

The paper has presented the results of an

empirical study on the most relevant scheduling

policies for soft tasks in fixed-priority, pre-emptive

real-time systems. In particular, the goal of the study

was to characterize the effect of gain time on the

behavior of these scheduling policies. The existence

of gain time, which is defined as the difference

between the WCET of a hard task and its actual

execution time, is typical in many real-time systems

for two main reasons: first, because the WCET

overestimation is still a common practice in the

design of many real-time systems in order to ensure

the safety of the schedulability analysis, and second,

because even if WCETs are accurately calculated,

the typical case for tasks is to consume only a

fraction of their WCETs at runtime. Traditionally,

gain time has been regarded as a design problem for

hard tasks (when related to WCET overestimation),

but also as an opportunity for soft tasks, which can

use this spare time in order to improve their response

times. Indeed, some scheduling policies for soft

tasks have included specific extensions to make an

effective use of this gain time.

PROPOSED SYSTEM

RTOS is an operating system that supports

real-time applications and embedded systems by

providing logically correct result within the

deadline. In these, dealing with the effect of gain

time on soft task scheduling in RTOS based

application. In Multitasking, gain time is a key

factor which explicit the difference between the

actual time and maximum time for completion of a

process. In some real time applications, delay in a

particular process may lead to severe effects. In

these, delay in a task execution is avoided by using

an effective pre-emptive scheduling and giving

importance to high priority interrupts even though if

there is any pending low priority interrupts on

semaphore.

➢ Effective Preemptive scheduling technique

➢ Immediate response to the priority

interrupts

➢ Automatically speed change

➢ Vehicle to Object distance measurement

➢ Intimation to the person inside the vehicle

As a prototype demonstration, we are

implementing the hardware using ARM Processor

for an automobile application. An object tracking

system will be fixed in the vehicle with vehicle-

object distance measurement facility. If an object

approaches the vehicle beyond the minimum

distance limit, then pre-emptive scheduler will

assign the object interference as a high priority

interrupt. As an immediate response, the speed and

direction of the vehicle will be changed by using a

control method PWM. The Pulse width modulating

technique will be initiated automatically by the

Processor without any manual braking system and a

heavy alert will be given to the person to bring

concentration in driving.

 The proposals greatly reduce the manpower,

save time and operate efficiently without human

interference. This project puts forth the first step in

achieving the desired target. An embedded system is

a combination of software and hardware to perform

a dedicated task. Some of the main devices used in

embedded products are Microprocessors and

Microcontrollers. Microprocessors are commonly

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 5

Page No: 38

referred to as general purpose processors as they

simply accept the inputs, process it and give the

output. In contrast, a microcontroller not only

accepts the data as inputs but also manipulates it,

interfaces the data with various devices, controls the

data and thus finally gives the result. Embedded

technology is now in its prime and the wealth of

knowledge available is mind-blowing. Embedded

technology plays a major role in integrating the

various functions associated with it. This needs to tie

up the various sources of the Department in a closed

loop system

SOFT REAL-TIME TASKS

Consider a set of n soft real-time tasks.

There exists one processor and only one task can be

executed on the processor at any given time. Except

for the processor, there are no other shared resources

to be taken into account. The tasks are pre-emptive,

independent and aperiodic. For each task τi , we

assume that ri , ei , Gi , and di ,which are respectively

the release time, execution time, penalty factor and

deadline of the task, are known. A slot is the smallest

time unit. The objective is to minimize Pn i=1 G (τi).

Therefore, we can formally express the objective

function as follows. Let us define xi,t = 0, 1 if the

processor is assigned to task τi at time slot t 0

otherwise Our goal is to minimize the objective

function Xn i=1 (ri + ξiei − di) +Gi , subject to the

following conditions Xn i=1 xi,t = 1, which means

only one processor is working at any given time t,

and X∞ t=1 xi,t = ei , meaning that the total time

slots assigned to any given task i over time is equal

to its execution time.

As mentioned earlier, the problem defined

in this section is known to be NP-hard. Thus, the

known algorithms for obtaining an optimal schedule

require time that grows exponentially with the

number of tasks. Assume that the tasks are

prioritized by a function for the optimal algorithm.

Since the problem is NP-hard (non-deterministic

polynomial-time hardness), it is not known if there

is any polynomial time function for prioritizing for

any optimal algorithm of the problem. Despite that,

the behavior of any optimal scheduling algorithm,

when the optimal order of priorities is provided.

Knowing a number of properties of any

optimal schedule for the problem will lead us to

designing heuristic algorithms which, in some

properties, have the same behavior as the optimal

schedule. We provide a set of heuristic algorithms

that are based on the properties proved here. The

heuristic algorithms differ in the way that the task

priorities are assigned. Also, it is desired to find an

upper bound for the objective function which, unlike

the optimal algorithm, would be computationally

feasible. In this work, we derive a tight upper bound

for the optimal solution.

PROPOSED BLOCK DIAGRAM

Fig 1: Block Diagram

These versatile devices are useful for

driving a wide range of loads including solenoids,

relays DC motors, LED displays filament lamps,

thermal print heads and high power buffers. The

ULN2001A/2002A/2003A and 2004A are supplied

in 16 pin plastic DIP packages with a copper lead

frame to reduce thermal resistance. They are

available also in small outline package

RESULTS

 Fig 2 : Automobile Robot with ARM Processor

Power supply unit

Signal

Signal

Motor

control unit

Heavy alert

unit

Measureme

nt Display

ARM CORE

A
D
C

 P
W
M

 GPIO

K

E

R

N

E

Pre
empti

Mem
ory
mana

Interr
upt

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 5

Page No: 39

FUTURE WORK

The system is implemented using the pre-

emptive scheduling policy to reduce the gain time

and handle the tasks based on priority. However, by

using the scheduling policies we can accomplish the

tasks efficiently but destinations cannot be

determined. We can obtain an efficient system by

using a GPS system along with the present; we can

locate the destinations accurately.

Fig3: Automobile Robot with ARM Processor

CONCLUSION

At present the vehicles are being controlled

by humans which might lead to accidents

sometimes, so we have introduced a system which

will work in both autonomous and manual mode by

using pre-emptive scheduling which divides the

tasks based on priority and functions the high

prioritized tasks. The vehicle can detect the

obstacles automatically using the ultra-sonic sensors

and proceeds in the obstacle free direction

accordingly. So,we can conclude that man can make

mistakes but machines cannot. Non pre-emptive

scheduling executes the tasks in cyclic order so only

one task can run at a time later it moves to next one

even though it is a higher priority task. Hence, pre-

emptive scheduling is chosen.

REFERENCES

[1] N.C. Audsley, R.I. Davis, A. Burns, and

A.J. Wellings, “Appro-priate Mechanisms for the

Support of Optional Processing in Hard Real-Time

Systems,” Proc. IEEE 11th Workshop Real-Time

Operating Systems and Software, pp. 23-27, 1994.

[2] L. Sha, B. Sprunt, and J. Lehozky,

“Aperiodic Task Scheduling for Hard Real-Time

Systems,” The J. Real-Time Systems, vol. 1, no. 1,

pp. 27-60, 1989.

[3] J.M. Banus, A. Arenas, and J. Labarta, “An

Efficient Scheme to Allocate Soft-Aperiodic Tasks

in Multiprocessor Hard Real-Time Systems,” Proc.

Int’l Conf. Parallel and Distributed Processing

Techniques and Applications, vol. 2, pp. 809-815,

2002.

[4] J.M. Banus, A. Arenas, and J. Labarta,

“Dual Priority Algorithm to Schedule Real-Time

Tasks in a Shared Memory Multiprocessor,”

Proc. Int’l Parallel and Distributed Processing

Symp., 2003.

[5] G. Bernat and A. Burns, “New Results on

Fixed Priority Aperiodic Servers,” Proc. IEEE 20th

Real-Time Systems Symp., pp. 68-78, 1999.

[6] E. Bini and G.C. Buttazzo, “Measuring the

Performance of Schedulability Tests,” Real-Time

Systems, vol. 30, pp. 129-154, 2005.

[7] L.A. Bu´rdalo, A. Espinosa, A. Garcı´a-

Fornes, and A. Terrasa, “Framework for the

Development and Evaluation of New Scheduling

Policies in RT-Linux,” Proc. Workshop Operating

Systems Platforms for Embedded Real-Time

Applications, pp. 42-51, 2006.

[8] L.A. Bu´rdalo, A. Espinosa, A. Terrasa,

and A. Garcı´a-Fornes, “Experimental Results of

Aperiodic Fixed-Priority Preemptive Policies in RT-

Linux,” Proc. Workshop Operating Systems

Platforms for Embedded Real-Time Applications,

pp. 10-19, 2007.

[9] J.M. Calandrino, D.P. Baumberger, T. Li,

S. Hahn, and J.H. Anderson, “Soft Real-Time

Scheduling on Performance Asym-metric Multicore

Platforms,” Proc. IEEE Real-Time Technology and

Applications Symp., pp. 101-112, 2007.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 5

Page No: 40

