
AN ENHANCED CRYPTOGRAPHIC RSA ALGORITHM WITH TWO PRIMES, FOUR
PRIMES AND CIRCULAR PRIMES

BG.Prasanthi 1, Associate professor, St. Joseph’s university, Bangalore,

Siddharth Vijay Sai 2, Research scholar, Bangalore

BG Lakshmi 3, Associate professor, Surana College Autonomous, Bangalore

K.Smitha4 , Research scholar, Bharatiyar University, Coimbatore.
ABSTRACT

In order to protect sensitive data, it is important to address data security concerns. One of the common
methods for protecting data is cryptography, which is generally regarded as a vital part of data security
and offers privacy, integrity, secrecy, and authentication. This paper proposes a strong data security
technique that combines prime and circular primes for RSA algorithm. The integration boosts RSA's
security to a higher-degree level. The message's ASCII values are encrypted using the circular primes ,
while the second and third levels are encrypted and decrypted using the conventional RSA. Circular primes
inverse is used in the final step to re-decrypt the data. The integration aids in providing for the factorization
issue with the conventional RSA is addressed by the integration. Three distinct algorithms—RSA with
two primes, RSA with four primes, RSA with circular primes methods, and the suggested algorithm—
were used in the comparative analysis. It has been demonstrated that the suggested algorithm takes less
time to encrypt and decrypt small amounts of data than it does to encode and decrypt large amounts of
data.

Keywords: Prime numbers, circular primes, ASCII values, Cryptographic algorithm RSA,

1. INTRODUCTION

Cryptography is the providing of protocol and methods required to secure a communication channel

when a third party is presumed to be present .Symmetric and asymmetric keys are used in cryptographic

algorithms. Only one key is needed for the encryption and decryption of data using symmetric

algorithms. On the other hand, asymmetric algorithms need both public and private keys to encrypt and

decrypt data. The public key is used to encrypt data while the receiver is the only one with access to the

private key, which is used to decrypt the data.The RSA Algorithm is an asymmetric encryption algorithm

that makes use of prime numbers for the encryption process. Asymmetric means that it uses two different

keys, a public key (for encryption) and a private key (for decryption). It was devised by Ron Rivest, Adi

Shamir and Leonard Adleman. RSA derives its security from the difficulty of factoring large integers that

are the product of two large prime numbers. Multiplying these two numbers is easy, but determining the

original prime numbers from the total -- or factoring -- is considered infeasible due to the time it would

take using even today's supercomputers.

2. METHODOLOGY

This section outlines our suggested approach for combining conventional RSA and Gaussian Interpolation
formulas in order to improve data security. By tackling the RSA factorization problem, the Gaussian
Forward and Backward Interpolation is combined with the standard RSA algorithm to increase security
strength.
This algorithm was implemented in Python. It assumes that the original prime number is a circular prime.
Once the number is provided, repeated right shifts are performed until all the circular primes are obtained.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 6

2.1 Proposed framework:

Figure 1:Flow diagram of proposed algorithm.

A general overview of the suggested algorithm is shown in Figure 1. The plaintext alphabets are translated
into their appropriate ASCII values in the input portion. The ASCII values are subjected to Gaussian
Forward Interpolation, which increases the encryption strength. The Ciphertext output is subsequently
subjected to RSA. This entails the creation of keys, encryption, and decryption using the ASCII values as
the basis. To get the plaintext, use Gaussian Backward Interpolation on the values from RSA that have
been decoded.

2.2 Implementation

The source input is where data is accepted from the user as plain text. The individual characters in the
string are converted to ASCII and then to circular prime values. This converts the alphabets to numbers
which is a form of encryption. For example, the ASCII value for ‘A’ is “065”

Algorithm 1: RSA algorithm using two primes

The keys for the RSA algorithm are generated in the following way:

 1. Two large prime numbers, p and q are chosen.
 2. The encryption modulus, n is calculated as the product of p and q.

3. The Euler’s totient, ɸ(n) is calculated next as:

ɸ(𝑛) = (𝑝 − 1) ∗ (𝑞 − 1)

4. An integer e is selected such that the 𝑔𝑐𝑑(ɸ(𝑛), 𝑒) = 1 where
1<e<ɸ(n). This will be used to create the public key {e, n}.

5. Calculate d such that it satisfies the equation:

𝑑𝑒 𝑚(ɸ(𝑛)) = 1.
This will be used to create the private key {d, n}.

6. Plaintext M is encrypted using the formula:

𝐶 = 𝑀𝑒 𝑚𝑜𝑑 𝑛

M must be less than n.

7. The encrypted text can be decrypted with the help of a private key and the formula:
𝑃 = 𝐶𝑑 𝑚𝑜𝑑 𝑛

2.3 Python code for the above Algorithm

Accepting the two prime numbers, P and Q along with the plaintext M
P = int(input("Enter the first prime number: "))

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 7

Q = int(input("Enter the second prime number: "))
M = int(input("Enter the plaintext value: "))

Calculating the modulus of encryption, n
n = P*Q

Calculating phi_n, the Euler's totient
phi_n = (P-1)*(Q-1)

Function to calculate gcd
def gcd(a,b):

 if (a == 0):

 return b
 if (b == 0):
 return a

 if (a == b):
 return a

 if (a > b):
 return gcd(a-b, b)
 return gcd(a, b-a)

The public key e should be a value greater than 1 and less than phi_n. Therefore, I've initialised i to 2.
i = 2
Running a while loop until a value for i is obtained such that the gcd of phi_n and i is 1
while True:

 # x is the gcd of phi_n and i
 x = gcd(phi_n,i)

 # if x has a value of 1, assign that value of i to the variable e.
 if x == 1:
 e = i
 break
 i+=1
Printing the value of e
print("\ne is:",e)
Next, we calculate the private key, d.
For this, we choose values of j starting from 0 all the way to infinity until a value for j is obtained such
that d is a non decimal number.
The formula used to calculate d is d = ((phi_n * j) + 1)/e
j = 0
Running the while loop until an appropriate value of j is obtained
while True:
 # num is the numerator
 num = ((phi_n*j)+1)
 d = num/e

 # To check whether the value of j is appropriate, if the modulus of num and e is 0, it means d is a
whole number, hence we break out of the loop
 if num%e==0:
 break

 # If the value of j isn't appropriate, incrememnt j and continue
 else:
 j+=1

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 8

 continue

d is of type float. If it isn't typecast to an integer, it will lead to an erroneous result when it is used later
for decryption.
d = int(d)

Print the value of the private key, d
print("\nd is: ",d)

Calculate the cipher text, c and print it
c = pow(M,e)%n
print("\nThe encrypted text is:",c)

Decipher the cipher text and print it
p = (c**d)%n
print("\nThe decrypted text is:",int(p))
Example

1. Consider p = 3 and q = 11
 2. n = p x q = 33.

3. ɸ(n) = (p-1) x (q-1) = 20.
 4.e = 3 using the formula gcd(e, ɸ(n)) = 1 (1<e< ɸ(n)).

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 9

5.The private key, d = 7 using the formula d = [(ɸ(n) x i) + 1] where 0 ≤ i < ∞ and the equation de
mod(ɸ(n)) = 1 should be satisfied.

6. The public key: KU = {e,n} = {3, 33}.
7. The private key: KR = {d,n} = {7, 33}.
8. Consider the plain text, M = 31. It is then encrypted using the formula: C = Me mod n = 313 mod 15
= 25.
9.The text is decrypted using the formula: P = Cd mod n = 257 mod 33 = 31.

2.4 Python code for RSA using 4 prime numbers

Accepting for prime numbers, P,Q,R,S along with the plaintext M
P = int(input("Enter the first prime number: "))
Q = int(input("Enter the second prime number: "))
R = int(input("Enter the third prime number: "))
S = int(input("Enter the fourth prime number: "))
M = int(input("Enter the plaintext value: "))

Calculating the modulus of encryption, n
n = P*Q*R*S

Calculating phi_n, the Euler's quotient
phi_n = (P-1)*(Q-1)*(R-1)*(S-1)

Function to calculate gcd
def gcd(a,b):

 if (a == 0):

 return b
 if (b == 0):
 return a

 if (a == b):
 return a

 if (a > b):
 return gcd(a-b, b)
 return gcd(a, b-a)

The public key e should be a value greater than 1 and less than phi_n. Therefore, I've initialised i to 2.
i = 2

Running a while loop until a value for i is obtained such that the gcd of phi_n and i is 1
while True:

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 10

 # x is the gcd of phi_n and i
 x = gcd(phi_n,i)

 # if x has a value of 1, assign that value of i to the variable e.
 if x == 1:
 e = i
 break
 i+=1

Printing the value of e
print("\ne is:",e)

Next, we calculate the private key, d.
For this, we choose values of j starting from 0 all the way to infinity until a value for j is obtained such
that d is a non decimal number.
The formula used to calculate d is d = ((phi_n * j) + 1)/e

j = 0

Running the while loop until an appropriate value of j is obtained

while True:

 # num is the numerator
 num = ((phi_n*j)+1)
 d = num/e

 # To check whether the value of j is appropriate, if the modulus of num and e is 0, it means d is a
whole number, hence we break out of the loop
 if num%e==0:
 break

 # If the value of j isn't appropriate, incrememnt j and continue
 else:
 j+=1
 continue

d is of type float. If it isn't typecast to an integer, it will lead to an erroneous result when it is used later
for decryption.
d = int(d)

Print the value of the private key, d
print("\nd is: ",d)

Calculate the cipher text, c and print it
c = pow(M,e)%n
print("\nThe encrypted text is:",c)

Decipher the cipher text and print it
p = (c**d)%n
print("\nThe decrypted text is:",int(p))

2.5 Algorithm 3: Proposed RSA algorithm using circular primes

RSA Algorithm wherein circular primes are used. The number of primes depends on the number of
digits of the given circular prime. A circular prime is a prime number wherein performing a right shift on
each digit of the number creates a new prime number. This is repeated until the initial number is
obtained.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 11

 1:Take any two large prime numbers ,convert to circular prime.
 2: Perform right shifts depending on the length of the number and generate all the circular primes.

 3: Use these primes to calculate n and ɸ(n)

 4: An integer e is selected such that the 𝑔(ɸ(𝑛), 𝑒) = 1
where 1<e<ɸ(n). This will be used to create the public key {e,n}.

 5:Calculate d such that it satisfies the equation:

𝑑𝑒 𝑚(ɸ(𝑛)) = 1.
This will be used to create the private key {d, n}.

 6:Plaintext M is encrypted using the formula:

𝐶 = 𝑀𝑒 𝑚𝑜𝑑 𝑛

M must be less than n.

 7:The encrypted text can be decrypted with the help of a private key and the formula:

𝑃 = 𝐶𝑑 𝑚𝑜𝑑 𝑛
Taken the prime number converted to circular prime and the encryption and decryption are done.

Python code for the proposed enhanced RSA

import math as m

n1 = input("Enter a prime number: ") #'31'
M = int(input("Enter the plaintext value: "))

l = []
for i in range(len(n1)):
 l.append(n1[i])
nums = [n1]
for i in range(len(n1)-1):
 l.append(l[0])
 l.pop(0)

 new_num = ""
 for i in l:
 new_num +=i
 print(new_num)
 nums.append(new_num)

n = 1
phi_n = 1
for i in nums:

 n*=int(i)
 phi_n *= int(i)-1

Function to calculate gcd
def gcd(a,b):

 if (a == 0):

 return b
 if (b == 0):
 return a

 if (a == b):
 return a

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 12

 if (a > b):
 return gcd(a-b, b)
 return gcd(a, b-a)

The public key e should be a value greater than 1 and less than phi_n. Therefore, I've initialised i to 2.
i = 2

Running a while loop until a value for i is obtained such that the gcd of phi_n and i is 1
while True:

 # x is the gcd of phi_n and i
 x = gcd(phi_n,i)
 # x = m.gcd(phi_n, i)

 # if x has a value of 1, assign that value of i to the variable e.
 if x == 1:
 e = i
 break
 i+=1

Printing the value of e
print("\ne is:",e)
Next, we calculate the private key, d.
For this, we choose values of j starting from 0 all the way to infinity until a value for j is obtained such
that d is a non decimal number.
The formula used to calculate d is d = ((phi_n * j) + 1)/e
j = 0
Running the while loop until an appropriate value of j is obtained
while True:

 # num is the numerator
 num = ((phi_n*j)+1)
 d = num/e

 # To check whether the value of j is appropriate, if the modulus of num and e is 0, it means d is a
whole number, hence we break out of the loop
 if num%e==0:
 break

 # If the value of j isn't appropriate, incrememnt j and continue
 else:
 j+=1
 continue

d is of type float. If it isn't typecast to an integer, it will lead to an erroneous result when it is used later
for decryption.
d = int(d)

Print the value of the private key, d
print("\nd is: ",d)

Calculate the cipher text, c and print it
c = pow(M,e)%n
print("\nThe encrypted text is:",c)

Decipher the cipher text and print it
p = (c**d)%n

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 13

print("\nThe decrypted text is:",int(p))
Example:
 1.Consider p = 13
 2 . n = p x q = 33.

 3. ɸ(n) = (p-1) x (q-1) = 20.
 4.e = 3 using the formula gcd(e, ɸ(n)) = 1 (1<e< ɸ(n)).

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 14

 5.The private key, d = 7 using the formula d = [(ɸ(n) x i) + 1] where 0 ≤ i < ∞ and the equation de
mod(ɸ(n)) = 1 should be satisfied.

6.The public key: KU = {e,n} = {3, 33}.
7.The private key: KR = {d,n} = {7, 33}.
8.Consider the plain text, M = 31. It is then encrypted using the formula: C = Me mod n = 313 mod 15 =
25.
9.The text is decrypted using the formula: P = Cd mod n = 257 mod 33 = 31.

Circular prime RSA

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 15

Verification using original RSA

THE PROPOSED ALGORITHM'S RESULTS

The python programming language is used to implement the algorithm. The execution metrics and
security strength are contrasted . The proposed algorithm combines traditional RSA with the circular
primes . Because of this, the encryption and to the fifth level of decryption. Table 1 compares the time
taken by three algorithms—RSA with two primes, RSA with four primes and the proposed algorithm.
The comparison's encryption and decryption values are shown in the figure.

Table 1: Comparing the encryption with three algorithms.

Encryption
Text Size RSA with two

prime
RSA with four
primes

Proposed

5KB 72 105 72
10KB 148 209 110
15KB 217 314 200

Table 2: Comparing the decryption with four algorithms.

Decryption
Text Size RSA RSA using 4

prime
Proposed

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 16

5KB 260 490 442
10KB 578 989 588
15KB 728 1298 1116

Table 1 shows that the suggested approach has the fastest encryption and decryption times for 5KB-sized
data. However, the encryption time is longer than the 2-key size and SRNN but shorter than the
conventional RSA techniques as the text size increased to 10 KB. Again, the suggested approach takes
longer to decrypt data than RSA and SRNN, but less time than the 2-Key size algorithm. This is the result
of collecting the ASCII values for each alphabet in the string and then interpolating the values using the
circular primes. As a result, both the encryption and decryption operations take longer to compute.

4. CONCLUSION

The integration of the circular primes with the conventional RSA in this paper's upgraded RSA scheme
increased the security of the latter. Additionally, it has raised the level of both encryption and decryption
respectively. According to the study of the simulation, the execution time was less when the text size was
small but longer when the text size was larger. This proposed algorithm has a stronger security strength
than the traditional RSA and the time taken is also less compared to the conventional RSA algorithms
with two and four primes.

REFERENCES

[1] P. Rewagad and Y. Pawar, "Use of Digital Signature with Diffie Hellman Key Exchange
and AES Encryption Algorithm to Enhance Data Security in Cloud Computing," 2013
International Conference on Communication Systems and Network Technologies, 2013, pp.
437-439, doi: 10.1109/CSNT.2013.97.

[2]A. Rawat, K. Sehgal, A. Tiwari, A. Sharma, and A. Joshi, "A novel accelerated
implementation of RSA using parallel processing", Journal of Discrete Mathematical Sciences
and Cryptography, vol. 22, no. 2, pp. 309-322, 2019. Available:
10.1080/09720529.2019.1582864

 [3] Dr.B.G.Prasanthi , “ Enhanced Network Security Algorithm with Advanced key
generation for RSA and Hashing” on 9/8/2019 at International conference on trends in
Engineerin

[4] Dr.B.G.Prasanthi , “ Contraptions to avoid object obstacles and increase the efficiency
using Quad copters Drone Technology: How to Build Your Own Drone” @
IJIRSET,vol9,issue 4,
 [5] Dr.B.G.Prasanthi .” Security analysis and portfolio management with effect of various market
fluctuations “ @ Jijnasa, UGC Care. ISSN : 0337-743X
 [6] Dr.B.G.Prasanthi , “ Energy efficient secure hybrid Bio inspired congestion control mechanism in
wireless sensor networks @ International journal of computer science and engineering
 [7] Dr.B.G.Prasanthi , “ Design of Bio based approach in wireless sensor networks “ @ International
journal of computer science and engineering.
[8] Dr.B.G.Prasanthi . “Workload prediction in cloud environment during seasonal trend @ Gernze

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 17

International Journal of Engineering and Technology co-authored Smitha Krishnan,2021.
[9] Dr.B.G.Prasanthi , “The Importance of Training and Development in Organization :What matters in

Practise“ in International journal of Mechanical Engineering with ISSN: 0794-5823 on 4th March
2022,Published in IJCSE

[10] Dr.B.G.Prasanthi , “Intelligent parking system using Lifi technology and convolutional neural
networks” with DOI number 10.37896/JSBV22.10/1490,vol22,Issue 10 2022 in “Journal of basic
sciences” pageno196-200

[11] V. Rayward-Smith, T. Cormen, C. Leiserson, and R. Rivest, "Introduction to
Algorithms", The Journal of the Operational Research Society, vol. 42, no. 9, p. 816, 1991.
Available: 10.2307/2583667.

[12]N. Kartha, "Review of the algorithm design manual, second edition by Steven S.
Skiena", ACM SIGACT News, vol. 42, no. 4, pp. 29-31, 2011. Available:
10.1145/2078162.2078169.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 7

Page No: 18

