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Abstract

The Gompertz model, which is very helpful in explaining tumour dy-
namics, is based on a differential equation that is used to compute growth
rates in a variety of domains. It is based on an exponential formula, and
the values it generates are logically chosen depending on how the tumour
behaves. The present study aims to analyze the qualitative properties of
Gompertzian parameter in Brain Tumour growth model.

Keywords : Gompertz model, brain tumour, Gompertz parameter, uniqueness,
stability.

1 Introduction

In order to understand the dynamic process of cancer cell formation and
proliferation, mathematical models have been devised to aid in tumour size pre-
diction. It has been demonstrated that differential equations can be used to
forecast the growth curve of a variety of tumours. The Gompertz model is one
that has been used for monitoring this prediction. The early stages of cancer
progression are naturally represented by the exponential model. Any portion of
the brain or skull can develop a brain tumour. Depending on the tissue from
which they originate, the brain can develop any one of more than 120 different
tumour forms.

Mathematics and computation can help in solving several growing prob-
lems in medical research by proposing models that allow us to formalize the
cause-and-effect process and tie it to the biological observations. The process
of mathematical modeling may be utilized to describe an object that exists in
any area of science, not only mathematics. Models can describe interactions
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between biological components, which allow researchers to deduce the conse-
quences of the interactions in medical and natural processes [3]. The basis of
any mathematical model used to study the treatment of cancer is a model of
tumor growth [6].The primary goals of a model of tumor growth are to predict
the evolution of a tumor and optimize treatment regimens.

A mathematical system consists of a collection of assertions from which we
derive consequences by logical arguments. The brain can be viewed as a system
with various interacting regions that produce complex behaviors. Mathematical
models have been developed to help predict tumor size and comprehend the
dynamical process of cancer cell development and proliferation. The use of
differential equations has been proven to predict the growth curve of various
types of tumors [2]. One model that has been successfully used to manage this
prediction is Gompertz model. In order to assess how accurate the growth over
time results are, the Gompertz model is employed to study the growing brain
tumour data over a period of seventy days. This article deals with qualitative
analysis of Gompertzian brain tumour model.

2 Estimation of the parameter

The classical Gompertz differential equation is

dV

dt
= (α− βlnV

′
)V , (1)

where
V = volume in cubic milimetres, V

′
= V

V0
, V0 is the volume at time t = 0

t = time in days,
β = growth limit of the tumor and
α = constant growth rate. An exact mathematical description of our model of
tumour cell proliferation is given by a Gompertz equation (1) of the following
form

V = V0e
α
β (1−e−βt) (2)

The Gompertz model presents a doubling time (Volume Rate Doubling time
(V RD)) which depends only on β. Solving equation (2) for V RD gives

V RD = − 1

β
ln

[
1− β

α
ln2

]
. (3)

Benjamin Gompertz (1825) [5] proposed that the growth of tumour volume in-
creased exponentially with time for all tumours. Various subsequent researchers,
especially in biology and gerontology, have viewed Gompertz observation as a
law that describes the process of senescence in almost all type of tumours at
any time after the onset of growth. As a rough approximation at initial growth,
Gompertz exponential formula does capture the rise in growth in a great variety
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of tumours. Equation (2) gives

α

β
=

ln[V
′
(t)]

(1− e−βt)
(4)

and

V (tm
′
) = V0e

α
β (1−e−βtm

′
) (5)

(where tm is the time at which the tumour contains a cell volume which is
one less than its maximum and which approximates the maximum lifespan of
tumour cells tm

′
). After a few algebraic manipulations we get

tm
′
= − 1

β
ln

[
1− β

α
ln

[
V (tm

′
)

V0

]]
. (6)

Finally the eatimation for β is given by

−β =
1

Vcu
e−

α
β

∞∫
−α

β

e−w

w
dw, (7)

where w = −α
β e

−βt.

Table 1 Data set of volume size of brain tumor
(reprinted from [7])

Time(days) V olume(V
′
(t)), mm2

1 151
5 178
10 226
15 329
20 433
25 564
30 598
35 687
40 796
45 855
50 934
55 1001
60 1089
65 1143
70 1217

3 Existence of the parameter

The integral in the equation (7) exists if β < 0. If β > 0, then e−w

w has a
pole at w = 0. Hence we take the principal value of the integral and prove its

3

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 9

Page No: 69



existence.

Theorem 3.1 Principal value of the integral
∞∫

−α
β

e−w

w dw exists, if β > 0.

Proof: Now,

∞∫
−α

β

e−w

w
dw =

−ϵ∫
−α

β

e−w

w
dw +

ϵ∫
−ϵ

e−w

w
dw +

∞∫
ϵ

e−w

w
dw. (8)

Consider the middle term on the right hand side of the above integral

lim
ϵ→0

ϵ∫
−ϵ

e−w

w
dw = lim

ϵ→0

 0∫
−ϵ

e−w

w
dw +

ϵ∫
0

e−w

w
dw


= lim

ϵ→0

− ϵ∫
0

e−w

w
dw +

ϵ∫
0

e−w

w
dw


= 0

Hence the principal value of the above integral exists, if β > 0. The basic
equation (7) is transcendental, involving an exponential integral. Hence, its
solution may not be unique and so it is necessary to prove the uniqueness of β.

4 Uniqueness of the parameter

4.1 Uniqueness theorem

Note:
It may be observed that 1

Vcu
cannot exceed α, as 1

Vcu
represents contributions

from α and β.
Proof:

−β =
1

Vcu
e−

α
β

∞∫
−α

β

e−w

w
dw (9)

−β ≤ 1

Vcu
e−

α
β e

α
β

(
−β

α

)
(10)

which implies that 1
Vcu

≤ α.

Theorem 4.1 The equation (7) has a unique solution if
2t

′
m

Vcu
< 1 for β > 0.

Proof:
Let β1 and β2 be two distinct positive solutions of (7). Then

−β1 =
1

Vcu
e−

α
β1

∞∫
− α

β1

e−w

w
dw
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−β2 =
1

Vcu
e−

α
β2

∞∫
− α

β2

e−w

w
dw

Using (3) we have

−β1 =
1

Vcu
e
− lnV

′
(t)

(1−e
−β1t

′
m )

∞∫
− lnV

′
(t)

(1−e
−β1t

′
m )

e−w

w
dw

−β2 =
1

Vcu
e
− lnV

′
(t)

(1−e
−β2t

′
m )

∞∫
− lnV

′
(t)

(1−e
−β2t

′
m )

e−w

w
dw

Now

β1 − β2 = − 1

Vcu

 ∞∫
z1

e−w+z1

w
dw −

∞∫
z2

e−w+z2

w
dw

 (11)

= − 1

Vcu

∞∫
0

e−x

[
1

x+ z1
− 1

x+ z2

]
dx

where zj = − lnV
′
(t)

(1−e−βjt
′
m )

for j = 1, 2 and x = (w − zj) for j = 1, 2. Also,

e−x ≥ 1,∀x ≤ 0. Hence we obtain

|β1 − β2| ≤ 1

Vcu
|z1 − z2|

∞∫
0

dx

(x+ z1)(x+ z2)

=
1

Vcu
ln

[
z1
z2

]
.

Therefore we get

|β1 − β2| ≤ 1

Vcu

∣∣∣∣∣ln
[
1− e−β2t

′
m

1− e−β1t
′
m

]∣∣∣∣∣
=

1

Vcu

∣∣∣∣∣ln
[
e−β2t

′
m(e−β2t

′
m − 1)

e−β1t
′
m(e−β1t

′
m − 1)

]∣∣∣∣∣
=

1

Vcu

∣∣∣∣∣ln
[
e−β2t

′
m

e−β1t
′
m

]
+ ln

[
e−β2t

′
m − 1

e−β1t
′
m − 1

]∣∣∣∣∣
=

1

Vcu

∣∣∣[β1t
′

m − β2t
′

m] + ln[eβ2t
′
m − 1]− ln[eβ1t

′
m − 1]

∣∣∣ .
5
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Applying mean value theorem, we obtain

|β1 − β2| =
1

Vcu

[
|β1t

′

m − β2t
′

m|+ ln|e−β2t
′
m − e−β1t

′
m |
]

=
1

Vcu
[|β1 − β2|t

′

m + |β1 − β2|t
′

m]

=
2t

′

m

Vcu
|β1 − β2|.

which gives (
2t

′

m

Vcu
− 1

)
|β1 − β2| ≥ 0. (12)

But
2t

′
m

Vcu
< 1. Hence the above inequality implies that β1 ≡ β2, for β > 0.

4.2 Necessary Condition for Uniqueness

Theorem 4.2 The necessary condition to have a unique solution for equation

(7) is that
t
′
m

Vculn[V
′ (t)]

< 1 for β > 0.

Proof:
Let β1 and β2 be two distinct positive solutions of (7). Then from (12) we have

β1 − β2 = − 1

Vcu
(z2 − z1)

∞∫
0

e−x

(x+ z1)(x+ z2)
dx

= − 1

Vcu

(
1

1− e−β2t
′
m

− 1

1− e−β1t
′
m

)
(1− e−β1t

′
m)(1− e−β2t

′
m)

×
∞∫
0

e−wln[V
′
(t)]

(1 + w(1− e−β1t
′
m))(1 + w(1− e−β2t

′
m))

dy.

Since
e−wln[V

′
(t)]

(1 + w(1− e−β1t
′
m))(1 + w(1− e−β2t

′
m))

≤ 1, (13)

we get

β1 − β2 ≤ − 1

Vcu

(
1

1− e−β2t
′
m

− 1

1− e−β1t
′
m

)
(1− e−β1t

′
m)(1− e−β2t

′
m)

∞∫
0

e−wln[V
′
(t)]dw

= − 1

Vcu

(
1

1− e−β2t
′
m

− 1

1− e−β1t
′
m

)
(1− e−β1t

′
m)(1− e−β2t

′
m)

1

ln[V ′(t)]
.

Hence,

|β1 − β2| ≤ 1

Vculn[V
′(t)]

∣∣∣(1− e−β1t
′
m)− (1− e−β2t

′
m)
∣∣∣
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=
1

Vculn[V
′(t)]

∣∣∣∣∣(β1t
′

m)
(1− e−β1tm

′
)

β1t
′
m

− (β2t
′

m)
(1− e−β2t

′
m)

β2t
′
m

∣∣∣∣∣
=

1

Vculn[V
′(t)]

∣∣∣∣∣∣∣∣
β1t

′

m(
β1t

′
m

1−e−β1t
′
m

) − β2t
′

m(
β2t

′
m

1−e−β2t
′
m

)
∣∣∣∣∣∣∣∣ .

Thus

|β1 − β2| ≤
t
′

m|β1 − β2|
Vcu

ln[V
′
(t)]max

(
β1t

′

m

1− e−β1t
′
m

,
β2t

′

m

1− e−β2t
′
m

)
. (14)

Suppose we have a unique solution of (7), it follows from (14) that

t
′

m

Vculn[V
′(t)]max

(
β1t

′
m

1−e−β1t
′
m
,

β2t
′
m

1−e−β2t
′
m

) < 1. (15)

Since
βt

′
m

1−e−βt
′
m

≥ 1,∀βt′m ≥ 0, from (15) we get

t
′

m

Vculn[V
′(t)]

< min

(
β1t

′

m

1− e−β1t
′
m

,
β2t

′

m

1− e−β2t
′
m

)
< max

(
β1t

′

m

1− e−β1t
′
m

,
β2t

′

m

1− e−β2t
′
m

)

1 ≤ min

(
β1t

′

m

1− e−β1t
′
m

,
β2t

′

m

1− e−β2t
′
m

)
≤ max

(
β1t

′

m

1− e−β1t
′
m

,
β2t

′

m

1− e−β2t
′
m

)

Note that
βt

′
m

1−e−βt
′
m

attains 1 only if βt
′

m = 0. Hence the above inequalities

implies that tim
′

Vculn[V
′ (t)]

< 1 for β > 0. Thus, to have a unique solution of

equation (7) it is necessary that
t”m

Vculn[V
′ (t)]

< 1 for β > 0.

5 Stability Analysis

The stability theorem of the growth rate parameter of the Gompertz brain
tumour model is investigated in this section [4, 1]. The stability examination
of the parameter (in terms of tumour cell volume) leads to the conclusion that
the parameter is constant.
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5.1 Necessary condition for stability

Let β1 and β2 be two positive distinct solutions of equation (7) with tumour
sizes V

′

1 and V
′

2 respectively. Then

β1 = − 1

Vcu
e
− ln[V1

′
(t)]

(1−e
−β1t

′
m )

∞∫
− ln[V1

′
(t)]

(1−e
−β1t

′
m )

e−w

w
dw

β2 = − 1

Vcu
e
− ln[V2

′
(t)]

(1−e
−β2t

′
m )

∞∫
− ln[V2

′
(t)]

(1−e
−β2t

′
m )

e−w

w
dw

Consider

β1 − β2 = − 1

Vcu

 ∞∫
x1

e−w+x1

w
dw −

∞∫
x2

e−w+x2

w
dw


= − 1

Vcu

∞∫
0

e−u

[
1

u+ x1
− 1

u+ x2

]
du,

where

xi = − ln[Vi

′
(t)]

(1− e−βit
′
m)

(16)

for i = 1, 2 and u = z − xi. Set

x1 =
x1 + x2

2
+

x1 − x2

2
, x2 =

x1 + x2

2
− x1 − x2

2
. (17)

[Note that x1+x2

2 is the arithmetic mean and x1−x2

2 is the perturbation term of
x1, x2]. Substitution of (17) into the above equation results in

β1 − β2 = − 1

Vcu
e

x1+x2
2

∞∫
x1+x2

2

e−y

[
1

y + x1−x2

2

− 1

y − x1−x2

2

]
dy (18)

where y = u+ x1+x2

2 .

On the RHS of (18), the expression

1

y +
(
x1−x2

2

) − 1

y −
(
x1−x2

2

) =
1

y

(
1− x1 − x2

2y
+ ...

)
− 1

y

(
1 +

x1 − x2

2y
+ ...

)
(19)

can be approximated to −(x1−x2

y2 ) by neglecting higher order perturbation terms

in each expression on the RHS of (19), since
∣∣∣x1−x2

x1+x2

∣∣∣ < 1.
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On account of (19), (18) becomes

β1 − β2 = − 1

Vcu
e

x1+x2
2

∞∫
x1+x2

2

−
(
x1 − x2

y2

)
e−ydy.

Further,

|β1 − β2| ≤ 1

Vcu
e

x1+x2
2

∞∫
x1+x2

2

|x1 − x2|
y2

e−ydy

(20)

≤ 1

Vcu
|x1 − x2|e

x1+x2
2 e−

x1+x2
2

∞∫
x1+x2

2

dy

y2
.

Upon integration we get

|β1 − β2| ≤
1

Vcu

∣∣∣∣x1 − x2
x1+x2

2

∣∣∣∣ . (21)

Retrieving xi from (16) and substituting into equation (21), we get

|β1 − β2| ≤ 1

Vcu

∣∣∣∣∣∣ lnV1

′
(eβ2t

′
m − 1)− lnV2

′
(eβ1t

′
m − 1)

lnV1
′
(eβ2t

′
m−1)+lnV2

′
(eβ1t

′
m−1)

2

∣∣∣∣∣∣
=

1

Vcu

∣∣∣∣∣∣ lnV1

′
eβ2t

′
m − lnV2

′
eβ1t

′
m − (lnV1

′
− lnV2

′
)

lnV1
′
eβ2t

′
m+lnV2

′
eβ1t

′
m

2 − (lnV1
′
+lnV2

′
)

2

∣∣∣∣∣∣ .
Dividing each term by lnV1

′
+lnV2

′

2 and representing Gompertz parameter β as
a sum of mean and perturbation as follows:

β1 =
β1 + β2

2
+

β1 − β2

2
, β2 =

β1 + β2

2
− β1 − β2

2
. (22)

and after a little algebra we obtain

|β1 − β2| ≤
1

Vcu

∣∣∣∣∣∣∣∣
2lnV1

′

lnV1
′
+lnV2

′ P − 2lnV2
′

lnV1
′
+lnV2

′ Q− lnV1
′
−lnV2

′

lnV1
′
+lnV2

′

2

R

lnV1
′

lnV1
′
+lnV2

′ P + lnV2
′

lnV1
′
+lnV2

′ Q−R

∣∣∣∣∣∣∣∣ (23)

where we have denoted P = e−
β1−β2

2 t
′
m , Q = e

β1−β2
2 t

′
m and R = e−

β1+β2
2 t

′
m .

Since

e±
=β1−β2

2 t
′
m ≈ 1± (

β1 − β2

2
)t

′

m (24)
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(by neglecting higher order perturbation terms in β1, β2) substituting (24) into
equation (23) and simplifying further we obtain

|β1 − β2| ≤
1

Vcu

∣∣∣∣∣∣∣∣
lnV1

′
−lnV2

′

lnV1
′
+lnV2

′

2

(1−R)− 2(β1−β2

2 )t
′

m

(1−R) + (β1−β2

2 )t′m( lnV2
′−lnV1

′

lnV1
′
+lnV2

′ )

∣∣∣∣∣∣∣∣ . (25)

In (25) the last term in the denominator is a product of two perturbation terms.
We neglect this higher order term to get

|β1 − β2| ≤
1

Vcu

∣∣∣∣∣ lnV1

′
− lnV2

′

lnV1
′
+lnV2

′

2

∣∣∣∣∣+ 1

Vcu
t
′

m

∣∣∣∣ β2 − β1

1− e−
β1+β2

2 t′m

∣∣∣∣ . (26)

Let

t
′

m

Vcu

[
1− e−

β1+β2
2 t′m

] < 1. (27)

Then 0 < e−
β1+β2

2 t
′
m < 1− t

′
m

Vcu
, which is true when

t
′
m

Vcu
< 1.

If
t
′
m

Vcu
< 1, further we have

−
(
β1 + β2

2

)
t
′

m < ln

(
1− t

′

m

Vcu

)
which gives

β1 + β2

2
>

1

t′m
ln

 1

1− t′m
Vcu

 .

Note that the above estimation is independent of the size V
′
(t).

Theorem 5.1
The growth rate parameter of Gompertz brain tumour model β is stable with

respect to the tumour size V
′
(t), provided

t
′
m

Vcu
< 1 .

Proof
When (27) holds, from (26) we get

|β1 − β2|

1−

 t
′

m

Vcu

[
1− e−

β1+β2
2 t′m

]
 ≤ 1

Vcu

∣∣∣∣∣ lnV1

′
− lnV2

′

lnV1
′
+lnV2

′

2

∣∣∣∣∣
or, equivalently

|β1 − β2| ≤ K
1

Vcu

∣∣∣∣∣ lnV1

′
− lnV2

′

lnV1
′
+lnV2

′

2

∣∣∣∣∣ , (28)
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where K = 1

1−
(

t
′
m

Vcu

[
1−e−

β1+β2
2

t
′
m

]) > 0. Hence it follows from (28) that β is

stable for any V
′
(t).

Theorem 2
The growth rate parameter of Gompertz brain tumour model β to be stable
with respect to the tumour size V

′
(t), it is necessary that β be a constant.

Corollary :
Since β is a constant, it is clear that β is stable also with respect to t

′

m.

6 Sensitivity Analysis of the parameter

Sensitivity analysis can be used to project changes in tumour growth rate
and volume as vital rates change and to identify the functional relationship be-
tween tumour volume or growth rate and the constituent rates (such as survival,
growth, maturation, and migration). A sensitivity analysis is performed on the
compartment dynamics to assess the effects of changing the parameters in brain
tumour model.

In the standard Gompertz growth model the deceleration factor becomes
insensitive to change in initial tumour volume V0 if V0 approaches a very large
value, but becomes very sensitive to changes in V0 if V0 approaches 1 [8]. Sim-
ilarly we may consider how equation 7 behaves when V

′
(t), Vcu and t

′

m are large.

To find the sensitivity changes, consider (7) and the partials of β with respect
to V

′
(t), Vcu and t

′

m are given by

− ∂β

∂V ′(t)
=

[V0 − (1/Vcu)]/V
′
(t)lnV

′
(t)

1 + (e−βt′m/(e−βt′m − 1))t′m[V0 − (1/Vcu)]
,

− ∂β

∂Vcu
=

−β/Vcu

1 + (e−βt′m/(e−βt′m − 1))t′m[V0 − (1/Vcu)]
,

− ∂β

∂t′m
=

−β(e−βt
′
m/(e−βt

′
m − 1))/[(1/Vcu)− V0]

1 + (e−βt′m/(e−βt′m − 1))t′m[V0 − (1/Vcu)]
.

It can be noted that

∂β

∂V ′(t)
=

[V0 − (1/Vcu)]/V
′
(t)lnV

′
(t)

1 + (e−βt′m/(e−βt′m − 1))tm′[V0 − (1/Vcu)]
≥ 0 ∀V

′
(t), (29)

∂β

∂Vcu
=

−β/Vcu

1 + (e−βt′m/(e−βt′m − 1))t′m[V0 − (1/Vcu)]
≤ 0, (30)

∂β

∂t′m
=

−β(e−βt
′
m/(e−βt

′
m − 1))/[(1/Vcu)− V0]

1 + (e−βt′m/(e−βt′m − 1))t′m[V0 − (1/Vcu)]
≤ 0. (31)
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As V
′
(t) tends to ∞ in (30), (31) and (31) we get

lim
V ′ (t)→∞

∂β

∂V ′(t)
= 0

lim
V ′ (t)→∞

∂β

∂Vcu
= 0

lim
V ′ (t)→∞

∂β

∂t′m
= 0.

Thus it is clear that β is insensitive to changes in v
′
(t) → ∞. That is β does

not change rapidly as the volume of the tumour increases. On the other hand,
if V

′
(t) → 1, from equation (30) we get

lim
V ′ (t)→1

∂β

∂V ′(t)
= ∞

since 1/V
′
(t)lnV

′
(t) → ∞ as V

′
(t) → 1. This in turn gives

lim
V ′ (t)→1

∂β

∂Vcu
= −∞

lim
V ′ (t)→1

∂β

∂t′m
= −∞.

Hence when the tumour growth rate decreases we see a substantial change in
the sensitivity of β with respect to initial tumour volume V0.

7 Conclusion

The major goal of this qualitative study is to gain a deeper knowledge of
the Gompertzian brain tumour model so that we may use it as a platform for
clinical applications. A study on asymptotic formulae will be dealt with in the
near future because asymptotic solutions are helpful in the study of qualitative
behaviour.
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