Factorial Harmonious Labeling of Some Cycle Related Graphs

M. Angeline Ruba¹ Dr. J. Golden Ebenezer Jebamani²

¹Research Scholar, Reg. No : 19211272092013, PG and Research Department of Mathematics, Sarah Tucker College(Women), Tirunelveli.

²Assistant professor and Head, PG and Research Department of Mathematics, Sarah Tucker College(Women), Tirunelveli.

^{1,2} Affiliated to Manonmaniam Sundaranar University, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

Abstract

In this paper, we launch a new type of labeling said to be factorial harmonious labeling. Let G be a connected graph with m edges. A function f is called Factorial Harmonious Labeling of graph G if $f : V \to \{0, 1, 2, ..., 2m - 1\}$ is injective and the induced function $f^* : E \to \{0, 1, 2, ..., m - 1\}$ defined as $f^*(e = ab) = \frac{[f(a) + f(b)]!}{[f(a)]![f(b)]!} + \{f(a) + f(b)\}$ (mod m) is bijection. A graph which admits Factorial Harmonious labeling is called Factorial Harmonious graph. We discuss this labeling condition satisfies to path, bistar, butterfly $B_{3,n}$, (3,n)-kite graph. **Key Words**: Factorial Harmonious labeling, Factorial Harmonious graph.

INTRODUCTION

A graph's vertex labeling G is a planning f made up of G's vertices to each edge ab has a label that depends on the vertices a and b and their label f(a) and f(b). A. Rosa [5] creates a Graph labeling methods in 1967. R. L. Graham *et al.* [4] proposed Harmonious graph notation in 1980 and A. Edward Samuel *et al.*[3] introduced the concept of Factorial labeling graph in 2018. We prove that the path, bistar, butterfly and (3,n)-kite graph are admits the factorial harmonious graphs.

KNOWN RESULT'S AND DEFINITION:

Definition: 1

Factorial Labeling was introduced by A. Edward Samuel and S. Kalaivani. A factorial labeling of a connected graph G is a bijection $f : V \to \{0, 1, 2, ..., m\}$ such that the induced function $f^* : E \to \{1, 2, ..., m\}$ defined as $f^*(e = ab) = \frac{[f(a) + f(b)]!}{[f(a)]![f(b)]!}$ then the edges labels are

distinct. Any graph which admits a factorial labeling is called a factorial graph.

Definition: 2

Harmonious labeling was introduced by R. L. Graham and N. J. A Sloane. Let G be a connected graph with m edges. A function f is called harmonious labeling of graph G if $f : V \rightarrow \{0, 1, 2, ..., m - 1\}$ is injective and the induced function $f^* : E \rightarrow \{1, 2, ..., m\}$ defined as $f^*(e = ab) = (f(a) + f(b))(mod m)$ is bijective. A graph which admits **harmonious labeling** is called harmonious graph.

Definition: 3

 $B_{p,q}$ is the **bistar** obtained from two disjoint copies of $K_{1,n}$ by joining the centre vertices through an edge.

Definition: 4

A walk is called a **path** if all its vertices are distinct. A path on n vertices is denoted by P_n .

Definition: 5

Two cycles of the same order n sharing a common vertex with an arbitrary number m of pendant edges attached at the common vertex called **butterfly graph** $B_{n,m}$ where n.m are two positive integers.

Definition: 6

The **kite** (**m**,**n**) **graph** is the graph obtained by joining a cycle graph C_m to a path graph P_n with a bridge.

FACTORIAL HARMONIOUS GRAPH

Definition:

Let G be a connected graph with m edges. A function f is called Factorial Harmonious Labeling of graph G if $f : V \rightarrow \{0, 1, 2, ..., 2m - 1\}$ is injective and the induced function

$$f^*: E \to \{0, 1, 2, \dots, m-1\}$$
 defined as $f^*(e = ab) = \frac{[f(a) + f(b)]!}{[f(a)]![f(b)]!} + \{f(a) + f(b)\} \pmod{m}$ is

bijection. A graph which admits **Factorial Harmonious labeling** is called Factorial Harmonious graph and it is denoted by $Fl_{\mathcal{H}}(G)$.

Theorem: 1

Factorial Harmonious Labeling exists in the path graph P_n for all n.

Proof:

Let $V(P_n) = \{a_i : 1 \le i \le n\}$ and

 $E(P_n) = \{ a_i a_{i+1} : 1 \le i \le n-1 \}$

Then $|V(P_n)| = n$ and $|E(P_n)| = n - 1$

Define an one-one function $f: V \rightarrow \{0, 1, 2, \dots, 2m-1\}$ by

 $f(a_i) = j , 0 \le j \le 2m - 1; 1 \le i \le n$

The induced edge labels are

$$f^*(a_i a_{i+1}) = \{ k, 1 \le k \le m; 1 \le i \le n-1 \} \pmod{m}$$

$$f^*(E(G)) = \{ 0, 1, 2, \dots, m-1 \}$$

Then $|V[f(P_n)]| = 2m$ and $|E[f^*(P_n)]| = m$

Hence the path graph P_n admits Factorial Harmonious labeling for all n.

Illustration:

Consider the path graph P_3 is given in the following figure 3.2.5.

Figure 1

The path graph P_3 admits Factorial Harmonious labeling.

Theorem: 2

Factorial Harmonious Labeling exists in the bistar graph $B_{p,q}$ for all p < q.

Proof:

Let
$$V(B_{p,q}) = \{a\} \cup \{b\} \cup \{a_i : 1 \le i \le p\} \cup \{b_j : 1 \le j \le q\}$$
 and

 $\mathsf{E}(B_{p,q}) = \{ab\} \cup \{aa_i : 1 \le i \le p\} \cup \{bb_j : 1 \le j \le q\}$

Then $|V(B_{p,q})| = p + q + 2$ and $|E(B_{p,q})| = p + q + 1$

Define an one-one function $f: V \rightarrow \{0, 1, \dots, 2m - 1\}$ by

$$f(a) = 1$$

$$f(b) = 0$$

 $f(a_i) = \{ j : 2 \le j \le 2m - 1 \text{ and } 1 \le i \le p \} \cup \{ b_j : 1 \le j \le q \}$

The edge labels are as follows

$$f^*(ab) = \{\{k : 1 \le k \le m\} \cup \{aa_i : 1 \le i \le p\} \cup \{bb_i : 1 \le j \le q\}\} \pmod{m}$$

$$f^*(E(G)) = \{0, 1, 2, \dots, m-1\}$$

Then $|V[f(B_{p,q})]| = 2m$ and $|E[f^*(B_{p,q})]| = m$

Hence the bistar graph $B_{p,q}$ admits Factorial Harmonious labeling for all p < q.

Illustration:

Consider the bistar graph $B_{4,5}$ is given in the following figure 2.

Figure 2

The bistar graph $B_{4,5}$ admits Factorial Harmonious labeling.

Theorem 3.3.4

Factorial Harmonious Labeling exists in the butterfly graph $B_{3,n}$ for all n.

Proof:

Let $B_{3,n}$ be the Butterfly graph.

Let V(G) = $\{a_1, a_2, a_3, a_4, a_5, b_1, b_2, \dots, b_n\}$, let a_1, a_2, a_3, a_4, a_5 be the vertices of the two cycles C_3 and a_1 be the apex vertex of the two cycles C_3 .

$$E(G) = \{a_1a_2, a_1a_3, a_2a_3, a_1a_4, a_1a_5, a_4a_5\} \cup \{a_1b_i : 1 \le i \le n\}$$

Then $|V(B_{3,n})| = n + 5$ and $|E(B_{3,n})| = n + 6$

Define an one-one function $f: V \rightarrow \{0, 1, 2, \dots 2m - 1\}$ by

 $f(a_1) = 0$ $f(a_2) = 1$ $f(a_3) = 2$ $f(a_4) = 3$

$$f(a_5) = 6$$

 $f(b_i) = j, 4 \le j \le 2m - 1; 1 \le i \le n$

The induced edge labels are

 $f^{*}(a_{1}a_{2}) = 2; \pmod{m}$ $f^{*}(a_{1}a_{3}) = 3; \pmod{m}$ $f^{*}(a_{2}a_{3}) = 6; \pmod{m}$ $f^{*}(a_{1}a_{4}) = 4; \pmod{m}$ $f^{*}(a_{1}a_{5}) = 7; \pmod{m}$ $f^{*}(a_{4}a_{5}) = 5; \pmod{m}$ $f^{*}(a_{1}b_{i}) = k, 1 \le k \le m; 1 \le i \le n \pmod{m}$

 $f^*({\rm E}({\rm G}))=\{\ 0,1,2\dots,m-1\}$

Then $|V[f(B_{3,n})]| = 2m$ and $|E[f^*(B_{3,n})]| = m$

Hence the butterfly graph $B_{3,n}$ admits Factorial Harmonious labeling for any n.

Illustration:

Consider the butterfly graph $B_{3,2}$ is given in the following figure 3.

Figure 3

The butterfly graph $B_{3,2}$ admits Factorial Harmonious labeling.

Theorem: 4

Factorial Harmonious Labeling exists in the (3, n) – kite graph for all n.

Proof:

Let (3, n) be the Kite graph.

Let V(G) = { $a_1, a_2, a_3, b_1, b_2, ..., b_n$ }, let a_1, a_2, a_3 be the vertices of the cycle C_3 and a_3 be the apex vertex of the path P_n .

 $E(G) = \{a_1a_2, a_1a_3, a_2a_3\} \cup \{a_3b_1\} \cup \{b_ib_{i+1} : 1 \le i \le n-1\}$

Then |V((3,n))| = n + 2 and |E((3,n))| = n + 3

Define an one-one function $f: V \rightarrow \{0, 1, 2, \dots 2m - 1\}$ by

$$f(a_{1}) = 2$$

$$f(a_{2}) = 3$$

$$f(a_{3}) = 1$$

$$f(b_{i}) = j, 4 \le j \le 2m - 1; 1 \le i \le n - 1$$

The induced edge labels are

 $f^*(a_ia_{i+1}) = \{\{k, 1 \le k \le m ; 1 \le i \le n-1\} \cup \{a_1a_3\} \cup \{a_3b_1\} \cup \{b_ib_{i+1} : 1 \le i \le n-1\}\} (mod m)$

$$f^*(E(G)) = \{ 0, 1, 2 \dots, m-1 \}$$

Then |V[f(3, n)]| = 2m and $|E[f^*(3, n)]| = m$

Hence the kite graph (3, n) admits Factorial Harmonious labeling for any n.

Illustration:

Consider the kite graph (3, n) is given in the following figure 4.

Figure 4

The kite graph (3, n) admits Factorial Harmonious labeling.

Conclusion:

In this paper, we have shown that path, bistar, butterfly $B_{3,n}$ and (3,n)-kite graph are Factorial Harmonious labeling. In future the same process will be analyzed for other graphs.

References:

- [1] D. Amuthavalli and M. Premkumar "Super Fibonacci Graceful Labeling Of Some Cycle Related Graphs" IJMTT – Volume
- [2] Dushyant Tanna, Harmonious Labeling of Certain Graphs, University of Newcastle, July 2013.
- [3] A. Edward Samuel and S. Kalaivani "Factorial Labeling For Some Classes of Graphs" AIJRSTEM, 23(1), June-August, 2018, pp.09-17.
- [4] R. L. Graham, N. J. A. Sloane, On Additive Bases and Harmonious Graphs, SIAM, J. Alg. Dis. Meth. 1 (1980) 382-404.
- [5] A. Rosa, On certain valuations of the vertices of a graph, Internet Symposium, Rome, July 1966, 349-355.