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Abstract 

In this paper, we launch a new type of labeling said to be factorial harmonious labeling. Let G be 

a connected graph with m edges. A function � is called Factorial Harmonious Labeling of graph 

G if � ∶ � → {0, 1,2, … , 2� − 1} is injective and the induced function �∗ ∶ � → {0,1,2, … , � −

1}  defined as �∗�� = ��� = 
������ �����!
������!������!

 + {f(a) + f(b)} (mod m) is bijection. A graph which 

admits Factorial Harmonious labeling is called Factorial Harmonious graph. We discuss this 

labeling condition satisfies to path, bistar, butterfly ��, , (3,n)-kite graph. 

Key Words: Factorial Harmonious labeling, Factorial Harmonious graph. 

INTRODUCTION 

A graph’s vertex labeling G is a planning f made up of G’s vertices to each edge ab has a label 

that depends on the vertices a and b and their label f(a) and f(b). A. Rosa [5] creates a Graph 

labeling methods in 1967. R. L. Graham et al. [4] proposed Harmonious graph notation in 1980 

and A. Edward Samuel et al.[3]  introduced the concept of Factorial labeling graph in 2018. We  

prove that the path, bistar, butterfly and (3,n)-kite graph are admits the factorial harmonious 

graphs. 
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KNOWN RESULT’S AND DEFINITION: 

Definition: 1 

Factorial Labeling was introduced by A. Edward Samuel and S. Kalaivani. A factorial 

labeling of a connected graph G is a bijection � ∶ � → {0, 1,2, … , �} such that the induced 

function �∗ ∶ � → {1,2, … , �}  defined as �∗�� = ��� = 
������ �����!
������!������!

 then the edges labels are 

distinct. Any graph which admits a factorial labeling is called a factorial graph.  

Definition: 2 

Harmonious labeling was introduced by R. L. Graham and N. J. A Sloane. Let G be a 

connected graph with m edges. A function f is called harmonious labeling of graph G if � ∶ � →

{0, 1,2, … , � − 1} is injective and the induced function �∗ ∶ � → {1,2, … , �} defined as 

�∗�� = ��� = ! ���� +  ����#��$% ��  is bijective. A graph which admits harmonious 

labeling is called harmonious graph.  

Definition: 3 

Bp,q is the bistar obtained from two disjoint copies of K1,n by joining the centre vertices 

through an edge.  

Definition: 4 

A walk is called a path if all its vertices are distinct. A path on n vertices is denoted by 

& . 

Definition: 5 

 Two cycles of the same order n sharing a common vertex with an arbitrary number m of 

pendant edges attached at the common vertex called butterfly graph � ,' where n.m are two 

positive integers. 

Definition: 6 

The kite (m,n) graph is the graph obtained by joining a cycle graph (' to a path graph 

&  with a bridge. 

 

FACTORIAL HARMONIOUS GRAPH 

Definition:  

Let G be a connected graph with m edges. A function � is called Factorial Harmonious 

Labeling of graph G if � ∶ � → {0, 1,2, … , 2� − 1} is injective and the induced function 
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 �∗ ∶ � → {0,1,2, … , � − 1}  defined as �∗�� = ��� = 
������ �����!
������!������!

 + {f(a) + f(b)} (mod m) is 

bijection. A graph which admits Factorial Harmonious labeling is called Factorial Harmonious 

graph and it is denoted by )*ℋ�,�.  

Theorem: 1 

Factorial Harmonious Labeling exists in the path graph &  for all n . 

 

Proof: 

Let V(& � = {�- ∶ 1 . / . 0} and 

E(& � = { �-�-�1 ∶ 1 . / . 0 − 1} 

Then |��& �| = 0 and |��& �| = 0 − 1 

Define an one-one function f: V → {0,1,2,…, 2m-1}by 

f��-� = j  , 0 . 3 . 2� − 1; 1 . / . 0 

The induced edge labels are 

�∗��-�-�1� ={ k , 1 . 4 . �; 1 . / . 0 − 1} (mod m) 

�∗(E(G)) = { 0,1,2, … , � − 1} 

Then |����& ��| = 2� and |���∗�& ��| = � 

Hence the path graph &   admits Factorial Harmonious labeling for all n. 

Illustration: 

Consider the path graph &� is given in the following figure 3.2.5. 
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Figure 1 

The path graph &� admits Factorial Harmonious labeling. 

Theorem : 2 

Factorial Harmonious Labeling exists in the bistar graph  �5,6 for all p < q . 

Proof: 

Let V(�5,6� ={�} ∪ {�} ∪  {�- ∶  1 . / . 9} ∪ {�: ∶ 1 . 3 . ;} and  

E(�5,6� = {��} ∪ {��-: 1 . / . 9} ∪ = ��: ∶  1 . 3 . ;>  

Then ?�!�5,6#? = 9 + ; + 2 and ?�!�5,6#? = 9 + ; + 1 

Define an one-one function f: V → {0, 1, … , 2� − 1} by  

f(a) = 1 

f(b) = 0 

f (�-) ={ 3 : 2 . 3 . 2� − 1 and 1 . / . 9} ∪ {�: ∶ 1 . 3 . ;} 

The edge labels are as follows 

�∗(��� = {{4  ; 1 . 4 . �} ∪ {��- ∶ 1 . / . 9} ∪ {��:: 1 . 3 . ;}} (mod m) 

�∗���,�� = {0,1,2, … , � − 1}           

Then ?���!�5,6#�? = 2� and ?���∗!�5,6#�? = � 

Hence the bistar graph �5,6 admits Factorial Harmonious labeling for all 9 < ;. 

Illustration: 

Consider the bistar graph �@,A is given in the following figure 2. 
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Figure 2 

The bistar graph  �@,A admits Factorial Harmonious labeling. 

Theorem 3.3.4 

Factorial Harmonious Labeling exists in the butterfly graph  ��,  for all n . 

Proof: 

Let ��,  be the Butterfly graph.  

Let V(G) = {�1, �B , ��, �@, �A, �1, �B, … , � }, let �1, �B , ��, �@, �A be the vertices of the two 

cycles (� and �1 be the apex vertex of the two cycles (�.  

E(G) = {�1�B, �1��, �B��, �1�@, �1�A, �@�A}  ∪ { �1�- : 1 . / . 0 } 

Then ?�!��, #? = 0 + 5 and ?�!��, #? = 0 + 6 

Define an one-one function f: V → {0, 1,2, … 2� − 1} by 

 ���1� = 0 

 ���B� = 1 

 ����� = 2 

 ���@� = 3 
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 ���A� = 6 

 ���-� = 3 , 4 . 3 . 2� − 1; 1 . / . 0 

The induced edge labels are 

�∗��1�B� = 2; (mod m) 

�∗��1��� = 3; (mod m) 

�∗��B��� = 6; (mod m) 

�∗��1�@� = 4; (mod m) 

�∗��1�A� = 7; (mod m) 

�∗��@�A� = 5; (mod m) 

�∗��1�-� = 4, 1 . 4 . � ;  1 . / . 0 (mod m) 

�∗(E(G)) = { 0,1,2 … , � − 1} 

Then ?���!��, #�? = 2� and ?���∗!��, #�? = � 

Hence the butterfly graph ��,   admits Factorial Harmonious labeling for any n. 

Illustration: 

Consider the butterfly graph ��,B  is given in the following figure 3. 

 

Figure 3   
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The butterfly graph ��,B admits Factorial Harmonious labeling.  

Theorem: 4 

Factorial Harmonious Labeling exists in the (3, 0 ) – kite graph for all n . 

Proof: 

Let �3, 0� be the Kite graph.  

Let V(G) = {�1, �B , ��, �1, �B, … , � }, let �1, �B , �� be the vertices of the cycle (� and �� be the 

apex vertex of the path & .  

E(G) = {�1�B, �1��, �B��} ∪ {���1}  ∪ { �-�-�1 : 1 . / . 0 − 1 } 

Then |���3, 0� �| = 0 + 2 and |���3, 0� �| = 0 + 3 

Define an one-one function f: V → {0, 1,2, … 2� − 1} by 

 ���1� = 2 

 ���B� = 3 

 ����� = 1 

           ���-� = 3 , 4 . 3 . 2� − 1; 1 . / . 0 − 1 

The induced edge labels are 

�∗��-�-�1� = {{4, 1 . 4 . � ;  1 . / . 0 − 1} ∪ {�1��} ∪ {���1} ∪ {�-�-�1 ∶ 1 . / .

0 − 1}} ��$% �� 

�∗(E(G)) = { 0,1,2 … , � − 1} 

Then |����3, 0��| = 2� and |���∗�3, 0��| = � 

Hence the kite graph �3, 0� admits Factorial Harmonious labeling for any n. 

Illustration: 

Consider the kite graph �3, 0� is given in the following figure 4. 
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Figure 4 

The kite graph �3, 0� admits Factorial Harmonious labeling.  

Conclusion: 

 In this paper, we have shown that path, bistar, butterfly ��,  and (3,n)-kite graph are 

Factorial Harmonious labeling . In future the same process will be analyzed for other graphs. 
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