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Abstract Industry revolution has emerged as being significantly powered by artificial intelligence (AI) in past decades. 

Artificial general Intelligence (AGI) adapts the concepts from deep learning to simulate human cognitive abilities 

into systems for smart manufacturing. Artificial General Intelligence (AGI) represents a significant advancement in 

the field of artificial intelligence, embodying the capability to understand, learn, and apply knowledge across a wide 

range of tasks similar to human intelligence. The convergence of AGI with multimodal models, combining 

information from various sensory modalities, holds transformative potential across industries such as neuroscience, 

healthcare, biomedicine, entertainment, robotics, and more. This paper aims to provide the perspective of AGI and 

its fundamental components, and the integration of AGI into multimodal models. 
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I.  INTRODUCTION 

The evolution of AI over the past few years has been remarkable but real intelligence that can be 

used in a variety of contexts is still exclusive. The phrase "narrow AI" refers to the development of 

systems that perform particular "intelligent" actions in particular scenarios, according to Ray Kurzweil 

[1]. For a restricted AI system, some degree of human upgrading or reconfiguration is typically 

required to enable the system to preserve its level of intelligence if the context or the behavior 

specification is even a little changed. Recent years have seen the emergence of a somewhat diverse 

community of researchers dedicated to the explicit interest in AGI, as demonstrated by conference 

series like AGI [2], BICA [3], and Advances in Cognitive Systems [4], as well as a large number of 

special tracks and symposia on Human-Level Intelligence [5], Integrated Intelligence [6] and related 

topics.  

High-level cognitive abilities like creativity, abstract reasoning, and problem-solving are also 

important features of the human brain [7]. Humanity has been working toward building artificial 

general intelligence (AGI) systems since the middle of the 20th century that are capable of reasoning, 

problem-solving, and creativity and have intelligence comparable to or even greater than that of a 

human. Alan Turing and other pioneers established early concepts about computers and their ability to 

emulate human cognition in the 1940s [8].  

AGI, often known as "strong AI," is capable of generalized cognitive functions such as the 

generalized transfer of learned knowledge from one context to others and goes beyond narrow task-

specific AI. In numerous AI research domains, including computer vision (CV) and natural language 

processing (NLP), deep learning has gained outstanding success. Deep residual networks (ResNets) 

[9], for instance, have previously outperformed humans at image classification. RoBERT [10] a 

language model has also performed better than people in several natural language tasks. Relationship 

networks [11] developed by DeepMind have superhuman performance on a dataset for relational 

reasoning. The study of attention has long been a focus of research in the domains of psychology and 

neuroscience, and its application to artificial intelligence greatly accelerates the development of AGI. 

The "Transformer" model, which is based on a self-attention mechanism of Artificial neural networks, 
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has served as the inspiration for several cutting-edge artificial neural networks, including BERT [12] 

and GPT [13]. The Vision Transformer (ViT) [14] model, which represents an image as a series of 

patches, exhibits state-of-the-art performance in a variety of computer vision (CV) tasks by 

incorporating self-attention processes into image processing.  

The capacity to apply knowledge and abilities in many contexts or disciplines, as well as the ability 

to synthesize information from other domains or modalities, are important indicators of cognitive 

intelligence. The incorporation of AGI with multimodal models, which can receive and comprehend 

data from various sensory inputs including text, images, and audio, is a crucial development that has 

the potential to significantly change the field of AI applications. The correlation between two different 

modalities is often modeled in pre-training data by multimodal (visual and textual) foundation models 

[15][16], which typically accept image-text pairings as input.  

Despite encouraging outcomes on quick learning/transfer and cross-modal comprehension tasks 

from existing multimodal foundation models, most of them [15][16][17] assume that there is a high 

semantic association between the input image-text pairs (such as image-caption pairings) and anticipate 

that there will be exact matches between the objects or regions in a picture and the words in the text. 

The most recent multimodal foundation models [15][16] often make use of object detectors to extract 

significant picture regions and use a single-tower network design to more accurately mimic the fine-

grained region–word matching. We create the Bridging-Vision and Language (BriVL) model by self-

supervised learning [17-21] using a great deal of multimodal data to address the aforementioned 

problems. Modeling weak semantic correlation data by image-text matching as compared to modeling 

strong semantic correlation data by direct image-to-text “translation” in previous works [15] would 

help us obtain a more cognitive model. Despite merely being pre-trained with an image-text matching 

learning target, our BriVL has already met some of the essential requirements for an AGI system due 

to its great generalization capabilities [22]. 

II. CHARACTERISTICS OF AGI 

A. Scalable: Large language models (LLMs) represent some of the earliest models that show human-

level performance across a range of tasks.[23] For LLMs like the GPT-2 and GPT-3, there is a 

correlation between the number of neurons and cognitive ability. It has been revealed that GPT-3 

outperforms humans on several benchmarks for natural language processing, including tasks 

involving question-answering, language translation, and text completion.[24] Its size and ability to 

process natural language have made it a potent tool for a variety of uses, such as chatbots, content 

creation, and language translation. It will be interesting to watch how the link between the number 

of parameters and cognitive ability changes as scholars work to advance LLMs and improve AGI.  

B. Multimodality and Interdisciplinary Composition: The ability of the human brain to simultaneously process 

and combine data from various sensory modalities is truly remarkable. The ability to perceive and 

understand their surroundings through a variety of sensory inputs, including sight, sound, touch, 

taste, and smell, is provided by this remarkable quality. Additionally, the skillful management of 

multimodal inputs enables people to make more accurate and comprehensive assessments of their 

environment, promoting smart communication and connection with others. The smart acquisition of 

knowledge from various modalities therefore has the potential to improve human cognitive ability. 

GPT-4 not only exhibits a high degree of proficiency in a variety of fields, including literature, 

medicine, law, mathematics, the physical sciences, and programming, but it also demonstrates an 

exceptional understanding of complex ideas by combining abilities and concepts from several fields 

with utility.  

C. Text-to-image and image-to-text generation: Among the most well-known models for handling picture 

descriptions (image-to-text generation) and text-to-image generation tasks are CLIP [25], DALL-E 

[26] and their successor GLIDE [27], VisualGPT [28] and Diffusion [29]. A pre-training technique 

called CLIP trains distinct picture and text encoders and learns to anticipate which photos in a 

dataset are connected to specific descriptions. Notably, CLIP possesses multimodal neurons that 
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activate when exposed to both the classifier label text and the associated image, comparable to the 

"Halle Berry" neuron in humans [30], indicating a fused multimodal representation. The generated 

images in GLIDE, an extension of DALL-E, are created using a diffusion model, although CLIP is 

still used to rank them [25]. The VisualGPT is the development of GPT-2 from a single language 

model to a multimodal model with a self-resurrecting activation unit that gives sparse activations to 

avoid mistakenly overwriting linguistic knowledge.  

D. Visual question answering: A key use of multimodal learning is visual question answering, which calls 

for a model to accurately answer a text-based query based on an image. The vision encoder, text 

encoder, multimodal fusion, and decoder modules can be built using a variety of sub-architectures 

using METER, a basic framework for training effective end-to-end vision-language transformers. 

The Unified Vision-Language pretrained Model (VLMo) [31], uses a modular transformer network 

to concurrently learn a dual encoder and a fusion encoder. A shared self-attention layer and a pool 

of modality-specific experts are present in each network block, providing a great deal of flexibility 

for tuning.  

E. Video-language modeling In 2021, Microsoft's Project Florence-VL released ClipBERT [32], a trans-

former model that combines a Convolutionary Neural Network (CNN) with minimally sampled 

frames. It is end-to-end optimized to handle common video-language problems. Masked 

Visual token Modeling and Sparse Attention have been added in later iterations of ClipBERT, such 

as VIOLET [33] and SwinBERT [34], to advance current techniques in video question answering 

video retrieval, and video captioning.  

F. Multimodal learning with auditory data: The latest development from Meta AI, Data2vec [35], offers a 

novel self-supervised learning framework that does not require conventionally labeled data. The 

Kosmos-1 [36] large language model from Microsoft handles text, visual, and aural input. It 

understands general modalities and exhibits contextual learning and instruction following using 

multimodal web-based corpora. Its skills include language comprehension, image captioning, 

answering visual questions, and image identification, demonstrating the ability for cross-modal 

transfer, which makes it easier for knowledge to be shared between language and multimodal inputs. 

For instance, GPT-4 performs better in textual tasks than ChatGPT because it incorporates 

multimodality [37].  

G. Alignment: Although a fact that several LLMs, like as BERT [12], GPT [23] GPT-2 [37] GPT-3, and 

Text-to-Text Transfer Transformer (T5) [38], have excelled at particular tasks, they nevertheless fall 

short of real AGI due to their capacity to perform unexpected behaviors. Reinforcement learning 

from human feedback (RLHF) has been used recently in large language models (LLMs) like 

Sparrow, InstructGPT, ChatGPT, and GPT-4 to address the problem of alignment with human 

instructions 

III. TECHNOLOGICAL ADVANCES IN AGI 

The main strategies that language models, like LLMs, rely on are zero-shot prompting, few-shot 

prompting, in-context learning, and instruction.  

A. In-context learning: In the sense of AGI, in-context learning refers to the model's ability to perceive 

and carry out new tasks by giving it a finite set of input-output pair examples [39] within prompts or 

simply by giving it a task description. While in-context learning shows parallels to explicit fine-

tuning at the prediction, representation, and attention behavior levels, prompts help the model 

understand the task's structure and patterns. This lessens the possibility of overfitting downstream 

labeled training data and enables to generalize and execute new tasks more efficiently without 

additional training or fine-tuning [40]. Recent developments in large-scale AGI models, particularly 

GPT-4, have shown such an intriguing capacity.  

B. Prompt and instruction tuning: In many downstream applications, the pre-trained models can achieve 

zero-shot learning owing to the prompt and instruction tuning-based techniques [41]. Producing 
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accurate and safe outputs based on instructions is a necessary condition for AGI models to perform 

at a level comparable to that of humans. Untrue and harmful outputs must be effectively managed 

as these models are employed increasingly frequently. Leading the way in this regard is 

InstructGPT. Supervised training is carried out with the aid of human-provided demonstrations and 

prompts to enhance the caliber of model outputs. Following that, humans compile and grade the 

various models' results according to their merit. The models are further improved using RLHF [42], 

a method that uses human preferences as rewards to direct the learning process.  

C. Evolution of AGI: AGI is capable of adapting to new situations, transferring domain knowledge, and 

displaying human-like cognitive abilities beyond streamlined and formatted task-solving workflows 

in the current literature, in contrast to "narrow AI", which is designed to perform specific 

tasks.[43][44] Overall, AGI might exhibit exceptional adaptation and versatility. Though actual 

AGI has not yet been achieved by science, advances in artificial intelligence and its subfields, such 

as deep learning, have set the stage for future research and the pursuit of AGI.  

D. Deep learning and modern AGI: AI has made significant progress through the development of deep 

learning, which was made possible by ground-breaking improvements in computing power and the 

accessibility of enormous datasets. AGI is getting closer to being a reality due to advancements in 

computer vision, natural language processing, and reinforcement learning. The birth of pre-trained 

language models, including BERT [12] and its various domain-specific variants, larger models like 

GPT-3 [45], and vision transformer (ViT) based models in computer vision, which revolutionized 

language modeling by utilizing self-attention mechanisms. Although these models are not yet AGI, 

they are a huge step in the right direction. A variety of use cases, including essay writing, question 

answering, search, translation, data augmentation, computer-aided diagnosis, and data de-

identification, have been deployed using ChatGPT's chatbot interface, which allowed millions of 

users to interact with AI in a more natural way [45]. Advanced math and logical thinking are both 

possible using ChatGPT. Additionally, the model does exceptionally well on common tests like the 

GRE, LSAT, and USMLE [46] GPT-4 is expected to address a previously unresolved variety of 

issues and has a wide range of applications. Its development is evidence of the significant 

advancements made in the search for AGI.  

E. The Architecture of AGI: Werbos's invention of the back-propagation algorithm in 1975, which is used 

in artificial neural networks [47], revolutionized the field by making it possible to effectively train 

neural networks with multiple layers, such as the perceptron. Deep learning has gained popularity 

because of advancements in technology, including the creation of graphics processing units (GPUs) 

and tensor processing units (TPUs), which have made it possible to train deep neural networks 

effectively. This advancement has stepped up the study and development of AGI by enabling the 

creation of more potent neural networks that can handle more difficult tasks. GPT-3 was trained to 

utilize large-scale distributed training over several GPUs and consumed a significant number of 

computational resources and energy, training a GPT model demands strong hardware and parallel 

processing techniques. Distributed computing methods are required for creating AGI models like 

GPT-4. TensorFlow, PyTorch, and Horovod are examples of distributed computing frameworks that 

make it easier to deploy these strategies, even though the precise distributed computing systems 

used to train GPT models may not be publicly known [48]. These frameworks allow researchers and 

developers to divide the training process among several devices, control device synchronization, 

and communication, and effectively utilize the available computational resources   

IV. LIMITATIONS OF AGI 

The creation of novel machine learning techniques, such as more effective teaching techniques, in-

context learning algorithms, and reasoning paradigms, is necessary for the development of AGI. Brain-

inspired AI methods try to provide computers the ability to learn from unstructured data without 

having to label it and to quickly generalize from a small number of instances, which is essential for 

giving computers the ability to learn and adapt to new tasks and contexts. The development of AGI 
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will have moral and societal effects to take into account, including bias, privacy, and security concerns. 

It is crucial to make sure that AGI is created and applied in a way that benefits society as a whole and 

is consistent with human values as it grows more potent and prevalent.  

CONCLUSION 

AGI's ability to replicate human cognitive versatility across a multitude of tasks holds the promise 

of revolutionizing industries such as healthcare, entertainment, education, and beyond. By 

transcending the limitations of task-specific AI, AGI infuses machines with the capacity to learn, 

reason, and adapt in a manner reminiscent of human thought processes. The convergence of AGI and 

multimodal models symbolizes not just technological advancement, but the fusion of human and 

machine cognition to shape a future where AI serves as a truly versatile collaborator. In the Industry 

revolution, AGI's role as a transformative tool is examined with its convergence with multimodal 

models for manufacturing smart tools. AGI, with its potential to propel innovation and redefine 

societal paradigms, necessitates a harmonious balance between technological prowess and ethical 

considerations 
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