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Abstract:  

Images serve as a powerful medium for conveying information and are widely utilized in official documents, medical 

records, financial reports, legal evidence, and multimedia presentations. Unfortunately, some individuals deliberately 

manipulate images with malicious intentions, compromising the genuineness and authenticity of the visual content. 

Detecting image forgery is paramount in safeguarding the genuineness of images, particularly in fields such as multimedia, 

forensics, and medicine. Image forgery encompasses various techniques, including copy-move and image splicing, where 

information within an image is deceitfully altered or misrepresented. Detecting these manipulations is essential to maintain 

the credibility and trustworthiness of visual data in diverse applications and contexts. 

The current method employs a Convolutional Neural Network (CNN) to detect copy-move image forgery. However, This 

method can only identify a single kind of forgery. and does not specify the forgery's location within the image. In contrast, 

the implemented method introduces an efficient algorithm that can identify both image splicing and copy-move image 

forgery. Additionally, it precisely pinpoints the manipulated portion within the image, thereby improving the overall 

detection process. This algorithm employs Faster R-CNN (Faster regions with convolutional neural networks) and Error 

Level Analysis. 

Keywords: Image Forgery detection, Error Level Analysis, Faster region with convolution neural network, Copy-move 

and image splicing forgeries. 

1 INTRODUCTION 

Detecting image forgery is a vital research field focused 

on identifying manipulated or tampered images to 

maintain their authenticity and credibility. In the digital 

age, where sophisticated editing tools make it easy to 

alter images, detecting these forgeries is essential in 

various fields such as forensics, journalism, and legal 

proceedings. 

Forgery techniques, including copy-move (involving 

duplicating a portion of the image and relocating it) and 

image splicing (combining different images or segments 

of images), are methods used for digital image 

manipulation, that challenge the integrity of digital visual 

content. Detecting these manipulations involves 

employing advanced technologies, including deep 

learning algorithms and convolutional neural networks 

(CNNs). These techniques analyze intricate patterns, 

features, and inconsistencies within images to 

differentiate between genuine and manipulated content. 

Image forgery detection plays a vital role in upholding 

the trustworthiness of digital images, ensuring the 

reliability of visual information in diverse applications 

and contexts.  

As image manipulation techniques evolve, continuous 

advancements in forgery detection methods are essential 

to maintain the integrity of digital media. 

1.1 Image Forgery Detection  Techniques: 

Detecting image modification techniques can be broadly 

divided into two categories: active techniques and 

passive techniques. 

1. Active techniques: 

   - In active techniques, supplementary information is 

incorporated into the image, either during the image 

capture process or subsequently by an authorized 

individual or entity. This added information can take the 

form of digital watermarks or cryptographic signatures. 

   - The added information is used to detect manipulation. 

Active approaches rely on this embedded data to 

determine whether an image has been altered. If the 

embedded information is altered, it indicates possible 

forgery. 

2. Passive techniques: 

   - Passive techniques, frequently called "blind 

approaches," do not rely on any supplementary 

information within the image. They analyze the inherent 

features of the image itself without any embedded data. 

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 154



   - Passive methods focus on the analysis of image 

properties such as pixel values, noise patterns, and 

statistical features. Algorithms and techniques like 

digital forensics, pattern recognition, and machine 

learning are applied to these properties to identify 

inconsistencies that suggest manipulation. 

In summary, active methods involve adding extra 

information to the image, while passive methods analyze 

the image itself without any additional data. Both types 

of methods play vital roles in the field of image forensics, 

ensuring the trustworthiness and credibility of digital 

imagery. [3].  

In Fig.1, the categorization of forgery detection is 

depicted. Passive approaches relying on forgery-type 

detection can be classified into (i) copy-move and (ii) 

splicing. 

 

Fig.1: Approaches for digital image forgery detection 

A. Copy-move forgery:   

A type of digital image modification known as "copy-

move forgery" involves copying and pasting a portion of 

an image to another location within a similar image. This 

technique is used to create the illusion of additional 

objects or elements within the photo. By transferring and 

duplicating a segment of the picture, the forger aims to 

deceive viewers into believing that the duplicated objects 

are authentic components of the original scene.  

 

Fig 2. A: Authentic image     B: Forged image 

Techniques like rotation, scaling, and other operations 

can be performed on the cloned region. These methods 

are used to make it difficult for human sight to spot the 

fake. [3]. Fig.2 illustrates a comparison between an 

authentic image (labelled as A) and a forged image 

(labelled as B). In image B, the bird region has been 

clipped and attached within the same image, either to 

obscure specific details or for some other purpose. While 

this might seem like a straightforward case, its 

implications are substantial, especially when applied to 

photos relevant to fields such as medicine, forensics, and 

defense. 

B. Image splicing: 

A computer image editing technique called "image 

splicing" involves copying or cutting parts of an image, 

or several images, and then pasting them into another 

image. This process involves combining different visual 

elements to create a composite image. Splicing is often 

used for creative purposes in graphic design and digital 

art. 

 

Fig.3: Methodology of Image splicing 

Fig.3 illustrates the methodology of image splicing 

forgery. Image splicing is distinct from copy-move 

forgery as the copied portion cannot be located elsewhere 

in the same image. This fundamental difference makes 

recognizing image-splicing forgeries more demanding 

than identifying copy-move forgeries. Similar object 

contours within the same image are easier to identify due 

to shared qualities like texture, colour, size, and shape. 

However, in instances of image splicing, the newly 

inserted object contour possesses distinct image 

attributes. [3]. 
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Fig.4: Image splicing Forgery 

The photos that are altered using these two techniques 

are incredibly difficult for humans to recognize. 

Determining these two types of forgeries becomes 

crucial and will also help with digital image forensics. 

Passive procedures are more effective than active ones, 

like watermarking, but they are also more difficult. 

Passive techniques involve extracting features from an 

image, which are then utilized to identify potential 

forgeries. Based on coincidences (correlation) or 

discrepancies between the features derived from two 

different portions of the image, duplication is detected. 

1.2 Deep Learning-Based Forgery Detection: 

Forgery Detection through Deep Learning techniques 

involves the application of advanced neural networks to 

analyze and identify manipulated or altered images. This 

approach leverages deep learning algorithms to 

recognize patterns, inconsistencies, and subtle alterations 

within digital images, making it a powerful tool for 

forgery detection. Training deep learning models is 

indeed a complex task, demanding substantial processing 

power and large datasets. convolutional neural networks 

(CNN) are widely used. CNNs incorporate a convolution 

layer that serves as both a discriminator and a feature 

extractor. [2]. 

2. EXISTING SYSTEM: 

The Convolution Neural Network (CNN) model serves 

as the foundation for this approach. The essential 

components of deep learning networks encompass the 

convolution layer, the pooling layer, and the fully 

connected layer. Convolutional neural networks (CNNs) 

are comprised of numerous convolutional layers, coupled 

with a pooling layer. Following this, one or more fully 

connected layers are integrated into the network 

structure. 

A. Convolution layer: This layer, positioned at the top, 

is utilized to extract features from the source image. 

Convolution between the image and a MxM filter is done 

by this layer. The resulting feature map, generated 

through this convolution process, contains detailed 

details of the picture, such as its boundaries and corners. 

B. Max Pooling layer: This layer's main objective is to 

reduce the convolved feature map's dimensions, thus 

conserving computational resources. This layer 

condenses the features extracted by convolution. Various 

types of pooling methods exist, each employing a 

different operation. In Max Pooling, the highest element 

in obtained features is chosen. 

C. Fully connected layer: All neurons are coupled in 

this layer. This layer lessens CNN's reliance on human 

oversight.   Prior to feeding the dense layer, this layer 

first flattened the image. In this layer, classification is 

also done. 

In the CNN approach, the entire image is utilized, 

differing from the conventional method that employs a 

block-based algorithm. This methodology encompasses 

three key stages: preprocessing, feature extraction, and 

classification. The CNN model's basic function is to 

retrieve significant details from the image. 

The framework of the existing algorithm is illustrated in 

Fig.5. The images are taken from different datasets. This 

approach was performed on three Standardized 

evaluation datasets namely MICC-F2000, MICC-F220, 

and MICC-F600. 
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Fig.5: Framework of the existing algorithm 

An input image is scaled for further processing during 

the preprocessing stage without any image elements 

being removed. Three convolution layers are used in the 

feature extraction step, and then a max-pooling layer. 

Features from the pre-processed image are extracted 

using three sets of convolution layers, and the image's 

dimensions are adjusted through max-pooling 

operations. The resulting feature maps, integrated with 

the final max-pooling, are vectorized and fed into fully 

connected layers. 

During the classification step, the fully connected layer 

links all the extracted features to the dense layer, 

classifying the information as either authentic or 

falsified. The proposed model can be effectively trained 

due to its use of the ''rmsprop'' optimizer and a batch size 

of 32. [1]. 

This approach was only developed for copy-move 

forgery and it does not locate the forged part in an image. 

3. PRELIMINARIES: 

3.1. Object Detection: 

Image classification and object localization are 

combined to form object detection. Images that are 

entered are categorized into two or more classes in image 

classification. Use bounding boxes to find the things in 

the image during object detection. The only purpose of 

the CNN algorithm is image classification. It is unable to 

identify the image's objects. Consequently, various 

object-detecting methods have been created. 

Fig.6 illustrates the categorization of object detection 

algorithms. Single-shot detectors and two-stage detectors 

are the two main categories to which object detection 

algorithms belong. This classification is based on the 

amount of network iterations an input image has 

undergone. 

Fig.6: Classification of object detection algorithms 

This object detection algorithm involves three key 

processes: 

• Identifying regions in the image that 

potentially contain an object, known as region 

proposals. 

• Extracting CNN features from these region 

proposals. 

• Classifying the objects using the extracted 

features. 

Different types of methods are used for extracting region 

proposals from the image. They are selective search, 

Region Proposal Network (RPN), and sliding window 

method. In this two-stage detector i.e., the Faster RCNN 

algorithm is used. 

3.2. The description of FASTER RCNN:  

Faster R-CNN belongs to the R-CNN family and serves 

as an object detection architecture. Its primary objective 

is to develop a powerful network capable of recognizing 

and locating objects within images effectively.  

Convolution neural networks (CNNs) and Region 

Proposal Networks (RPNs) are combined into one 

network to increase the model's speed and accuracy. 

Fig.7 illustrates the architecture of the R-CNN model. 
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Fig.7: Faster R-CNN architecture 

It is mostly made up of two sections: 

A. Region Proposal Network (RPN) 

B. Fast R-CNN detector 

A. Region Proposal Network (RPN): 

Regional proposals are produced by the RCNN and Fast 

RCNN models using a conventional selective search 

algorithm. In this computation process takes longer. The 

proposal time for each image is decreased in the Faster 

RCNN model from 2 seconds to 10 ms by the addition of 

a convolutional-based network i.e., RPN.  

RPN is responsible for generating possible regions of 

interest (region proposals) in images that may contain 

objects. Fig.8 explains the operation of the Region 

Proposal Network. 

The RPN employs the feature maps acquired by 

the backbone CNN. The RPN uses a sliding window 

method with anchor boxes of various sizes and shapes to 

indicate potential object positions on these feature maps. 

Throughout training, the network adjusts these anchor 

boxes to better match the sizes and positions of real 

objects. 

The RPN indicates two parameters for each anchor: 

• The probability of the anchor containing an 

object (“objectness Score”) 

• Adjustments to the anchor’s coordinates to 

match the actual object’s shape. 

 

Fig.8: operation of RPN 

When several area proposals are generated, many of 

them may overlap and correspond to the same object. 

Here, the anchor boxes are ranked according to their 

objectness probability using the Non-Maximum 

Suppression (NMS), and anchor boxes with the highest 

scores are selected in the top-N. NMS makes sure that 

the final, chosen proposals are correct and unique. These 

chosen anchor boxes are taken into consideration as 

possible region proposals. 

B. Fast R-CNN detector: 

The Fast R-CNN detector is a vital element of the Faster 

R-CNN architecture, tasked with identifying objects 

within the region proposals generated by the Region 

Proposal Network. 

 

Fig.9:  Mechanism of RoI Pooling 

Fig.9 explains the Mechanism of RoI Pooling. The 

mechanism of Region of Interest (RoI) pooling involves 

dividing the region proposals into a fixed-size grid and 

then applying max-pooling or average-pooling to each 
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grid cell. This process ensures that the features extracted 

from various-sized RoIs are transformed into a uniform 

size, making them suitable for further processing in 

neural networks. RoI pooling is a crucial step in object 

detection architectures like Faster R-CNN, allowing the 

network to handle variable-sized regions efficiently. 

The RoI-pooled feature maps are input into the CNN to 

extract meaningful features that capture object-specific 

information. The RoI-pooled and feature-extracted 

regions are then routed through a series of fully linked 

layers. The tasks of classifying objects and bounding box 

regression are carried out by these layers. After the 

network predicts class probabilities and bounding box 

changes, the final detection results are refined using a 

post-processing procedure. Non-maximum suppression 

(NMS) is employed in this stage to eliminate redundant 

detections while keeping the most certain and non-

overlapping detections. 

4. IMPLEMENTATION: 

This approach is developed to identify both copy-move 

and image-splicing forgeries while also pinpointing the 

specific manipulated area within the forged image. A 

faster R-CNN model is used for this application. Fig.10 

shows the Structure of the implemented model. 

 

Fig.10: Structure of implemented model 

 

Table 1: The details of the above-mentioned datasets 

Dataset Release year Image size Image Type Authentic Tampered 

CASIA V2.0 2009 240x160 to 

900x600 

TIFF/JPEG 7491 5123 

MICC-F2000 2011 2048 x 1536 JPEG 1300 700 

MICC-F220 2011 722x480/ 

800x600 

JPEG 110 110 

COVERAGE 2016 Various TIFF 100 100 

MISD 2021 384x256 JPEG 618 300 

A. Input Data: 

Standard and widely used datasets for evaluating image 

forgery detection techniques include CASIA V2.0, 

MICC-F2000, MICC-F220, COVERAGE, and MISD. 

Details regarding the contents of these datasets are 

provided in Table 1. 

 

 

B. Data Processing: 

In data preprocessing, it applies an ELA operation to the 

provided image. Error level analysis is a preprocessing 

method that compares the original image with a 

compressed version. Based on the JPEG compression 

ratio of each pixel, the image is coloured.  
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Fig.11: Data Processing block 

A change in the level of compression artifacts in the 

image could suggest that it was manipulated. Resize and 

normalize the ELA pictures. The dataset is partitioned for 

training and validation purposes. Fig.11 shows the 

operations in the data processing step. 

C. CNN Modelling and Feature Extraction: 

The CNN Model receives the Ela pictures in order to 

create feature vectors. Fig.12 contains the CNN model 

for the implemented model. It has two convolutional 

layers with a 5x5 kernel each and a 2x2 max pooling 

layer. A dropout layer is next applied, which reduces the 

features by a factor of 0.25. The Fully Connected layer, 

which connects every neuron, then uses the Softmax 

Classifier to determine whether the image is genuine or 

a forgery.   

 

 

Fig.12: CNN Model for implemented model 

D. Training and Evaluation of Faster R-CNN Model: 

Initially, construct the Faster R-CNN model and proceed 

with training it using the available datasets. Typically, 

60% to 80% of images within the datasets are allocated 

for training, while the remaining 20% are set aside for 

testing the model. If the Convolutional Neural Network 

(CNN) classifies an image as forged, it is then passed to 

Faster R-CNN for the localization of the manipulated 

region. It gives whether it is a copy-move or image 

splicing with a forged part location.   

5. RESULTS: 

The hardware used for this is an HP Pavilion quad-core 

CPU with 8 GB RAM storage. The code is implemented 

in Python 3. The tests were executed on the Google 

Collaboratory server. 

 

Table 2: Comparison of metrics over datasets 

 

A. Evaluation Metrics: 

The parameters used to assess the capability of the 

implemented model are as follows: 

• Accuracy = 
(��+ ��)

(�� + �� + �� + ��)
 × 100 

• Precision = 
��

�� + ��

 × 100  

• Recall = 
��

�� +��

 × 100  

Dataset Accuracy Precision Recall F1-score 

MICC-F2000 96.06 96.38 96.05 96.05 

MICC-F220 95.00 95.35 95.00 95.05 

Coverage 100 100 100 100 

CASIA V2.0 87.52 87.68 87.52 87.58 

MISD 85.56 85.72 85.55 85.20 
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• F1 − score = 
2 × (precision × recall)

(precision + Recall)
  

In the provided context, TP signifies the count of 

tampered images accurately identified as tampered, 

whereas FP stands for the count of original images 

incorrectly identified as tampered. FN represents the 

count of tampered images mistakenly identified as 

original, and TN represents the count of original images 

correctly identified as original. 

B. The Results over Datasets: 

In this method, five benchmark datasets are used. The 

performance of this method over different datasets is 

given below. Table 2 demonstrates that the implemented 

approach surpasses in terms of accuracy, precision, F1-

score, and recall. 

1.MICC-F200 Dataset: 

At 20 epochs, this model attains a 96% accuracy rate. It 

gives 96.55% highest accuracy value at epoch 4 in 

validation accuracy and 97.78% in training. 

 

Fig.13: Accuracy values for MICC-F2000 dataset 

 

Fig.14: Loss values for the MICC-F2000 dataset 

The outcomes are depicted through accuracy and loss 

curves illustrated in Fig.13 and fig.14. This model gives 

better accuracy for this dataset than others, but coverage 

gives 100%. 

 

2. MICC-F220 Dataset: 

At 20 epochs, this model achieves an accuracy of 

95.35%. The results are displayed through accuracy and 

loss curves, as depicted in Fig.15 and fig.16. 

 

Fig 15: Accuracy values for MICC-F220 dataset 

 

Fig 16: Loss values for the MICC-F2000 dataset 

3. Coverage Dataset: 

At 20 epochs, this model reaches a perfect accuracy of 

100%. The results are visualized through accuracy and 

loss curves, as presented in fig.17 and fig.18. 

 

Fig.17: Accuracy values for the COVERAGE dataset 

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 161



 

Fig.18: Loss values for the COVERAGE dataset 

4. CASIA V2.0: 

At 20 epochs, this model achieves an accuracy of 

87.68%. The results are illustrated in terms of accuracy 

and loss curves, as displayed in fig.19 and fig.20. 

 

Fig.19: Accuracy values for CASIA V2.0 dataset 

 

Fig.20: Loss values for CASIA V2.0 dataset 

5. MISD: 

At 20 epochs, this model reaches an accuracy of 85.72%. 

The results are visualized through accuracy and loss 

curves, as presented in fig.21 and fig.22. 

 

Fig.22: Accuracy values for MISD dataset 

 

 

Fig.22: Loss values for the MISD dataset 

6. CONCLUSION: 

This study introduces Deep learning architectures 

designed for image forgery detection. The implemented 

model can efficiently differentiate between altered and 

original photos, categorizing candidate images into two 

groups: forged and original. Specifically, it identifies the 

manipulated portion within altered images. The approach 

involves extracting feature vectors from the image's 

features, and automatically detecting feature 

dependencies and correspondences through the 

utilization of the fully connected layer. To employ the 

proposed model for testing and identifying altered 

photos, it must undergo a training process. Additionally, 

utilizing one of the object detection techniques, Faster R-

CNN, enables the identification of forged parts within 

images. The performance of the suggested model was 

evaluated using Standardized datasets including MICC-

F2000, MICC-F220, COVERAGE, CASIA V2.0, and 

MISD. Notably, the proposed method achieved a 

remarkable 100% accuracy after 20 epochs when tested 

with the COVERAGE dataset. 
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