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In the past few decades, there have been significant developments in nanotechnology in various areas. The present work 

focuses on the Molybdenum-based nanomaterials which have shown promising applications in the field of electronic and 

energy storage devices. Molybdenum nanomaterials have characteristics next to graphene nanomaterials. Nano-scale forms 

of molybdenum oxide and molybdenum sulfide are excellent materials for supercapacitor electrodes. The review indicates 

different methods preferred for the synthesis of molybdenum-based nanomaterials. 
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Introduction 

The demand and the advance in the development of flexible, 

portable electronic and energy storage devices are based on the 

energy storage devices such as fuel cells and supercapacitors. 

Supercapacitors are electrochemical capacitors, which act as a 

linking bridge between batteries and conventional capacitors. 

Batteries have higher specific energy for lower specific power and 

capacitors usually have low specific energy over the high specific 

power, whereas, supercapacitor shows higher power densities, short 

charging time, and long discharging time compared to batteries and 

an excellent specific capacitance and high energy densities than the 

traditional capacitors [1]. 

 

 

Electrochemical double-layer Capacitors and Pseudocapacitors are 

the two types of supercapacitors. Electrochemical double-layer 

capacitors employ electrostatic adsorption at the electrode and 

electrolyte interface to store energy. These include nanoporous 

carbonaceous materials which are defined with high specific surface 

area, high conductivity, and high mechanical conductivity. 

Pseudocapacitors prefer transition metal oxides and conducting 

polymers, as quick and reversible redox reaction takes place nearby 

/ on to the surface of the electrodes in the process of the storage of 

charge [2,3].  

 

 

Higher capacitances and energy densities are exhibited by 

pseudocapacitors, cost-effective over the electrochemical double-

layer capacitors. Examples of transition metal oxides electrodes for 

pseudocapacitors are ruthenium oxide, manganese dioxide, and 

cobalt oxide. Conducting polymers such as polyaniline, polypyrrole 

and polythiophene can be used as pseudo capacitor electrodes [4,5]. 

 

 

However, the growing demand for energy storage devices led to the 

development of new types of electrode materials. Therefore, the 

research of nanometer-scale metal oxide and sulfide as the material 

of supercapacitor electrodes has become a new field. For example, 

cobalt sulfide (CoS, CoS2), nickel sulfide (NiS, NiS2, Ni3S2), 

molybdenum sulfide (MoS2), copper sulfide (CuS, Cu2S), and 

vanadium sulfide (VS, VS2) have been used as supercapacitors 

electrode materials [6 - 8]. 

 

 

Transition metal dichalcogenides (TMDs) are of great potential for 

the use of next-generation electronic devices. Of these, 

semiconducting TMDs can be produced by combining the metals 

(M)W and Mo with ore-forming chalcogens (X) S or Se in the form 

MX2. These materials have a structure that consists of strong in-plane 

covalent bonds (X–M–X) that create isolated atomic layers resulting 

in a bulk crystal when they interact with one another through weak 

van der Waals forces [9-11]. 

 

Electronic properties of the material change with the number of 

layers. Monolayer exhibits a direct bandgap, when the layer 

increases, materials show an indirect bandgap with its bulk structure. 

this fact is identified by spectroscopic and electronic studies in the 

mechanically exfoliated MoS2 and other semiconducting TMDs [12, 

13]. Mineral crystals are used for the isolation of monolayers of MoS2 

by exfoliation through different top-down approaches, including 

mechanical exfoliation [10,14], chemical exfoliation [15], and 

ultrasonic treatments [16]. 

In recent years, the contribution of Molybdenum oxide (MoO3) and 

molybdenum sulfide (MoS2) related materials has been identified [6]. 

As it stimulated interest among other transition metal sulfides due 

to its layered structure and inherent conductivity,[17] and it is 

considered to be a suitable replacement for graphene and carbon 

nanotubes in energy storage applications. In addition, molybdenum-

based materials (such as MoO3, MoO2, and MoS2) exhibit various 

valences and rich chemical properties, making them viable candidate 

materials for electrochemical applications [18]. 

Synthesis of Molybdenum sulfide nanoparticles 

MoS2 is a transition metal sulfide with a layered structure, where a 

metal molybdenum layer is sandwiched between two sulfur layers 

with weak van der Waals forces, and the interlayer S–Mo–S atoms 

are strongly linked with covalently [19-21]. MoS2 possesses unique 

physicochemical properties due to its unique atomic and electronic 

structure. It has application in solid lubricants, catalysts, 

supercapacitors, and lithium-ion batteries [22-24]. Among these, the 

research on the application of MoS2 as a supercapacitor electrode 

material is the most extensive.  
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Soon et al. found that the MoS2 nano-film presented an electric 

double layer capacitance behaviour [25].  

 

Ma et al. reported that nano-MoS2 intercalated in polypyrrole could 

improve its capacitance performance [26].  

 

Cao et al. fabricated micro-supercapacitors using coated MoS2 

nanofilms and showed that MoS2 has excellent electrochemical 

performance in aqueous electrolytes due to its structure. Usually, 

two-dimensional electrochemical electrodes face inadequate 

contact with the electrolyte and hence low surface area utilization 

efficiency. Numerous efforts have been made to design three-

dimensional (3D) electrodes, such as MoS2/mesoporous carbon 

spheres. Recently, there have been some reports related to NiCo2S4 

and graphene oxide composites applied in supercapacitors [27].  

 

Krishnamoorthy et al. reported specific capacitance of chemically 

prepared MoS2 nanostructure as 92.85 F/g [28]. 

 

 Huang et al. reported polyaniline/MoS2 composites as 

supercapacitor electrodes with the specific capacitance of 575 F/g. 

With the hydrothermal method, flower-like molybdenum disulfide 

microspheres were synthesized. It can be used as a supercapacitor 

electrode and exhibited high specific capacitance (518.7 F/ g ) and 

excellent cycling performance (88.2% retention after the completion 

of 2500 cycles). In addition, a high-performance symmetric 

supercapacitor was successfully fabricated by using MoS2 as both 

positive electrode and negative electrode, which exhibited a high 

energy density of 12.46 W h/kg at a power density of 70 W/ kg [29]. 

 

Molybdenum disulfide (MoS2) is a material having fascinating 

properties, like high surface area, higher ionic conductivity than 

metal oxides [30], and good mechanical flexibility [31]. Hence, its 

application is extended towards in the field of electronic appliances, 

gas sensors, supercapacitors, batteries, hydrogen evolution 

reactions [28, 32-35]. The MoS2 nanosheets are synthesized either by 

bottom-up approaches, such as hydrothermal, chemical vapor 

deposition (CVD), or by top-down approaches, like, ball milling, 

mechanical exfoliation, and liquid phase exfoliation [28, 36-39].  

 

 Among them, liquid-phase exfoliation is the simple and high-yielding 

route to prepare the MoS2 nanosheets. The solvents such as ethanol, 

dimethylformamide (DMF), N-Methyl-2-pyrrolidone (NMP) are used 

to exfoliate the bulk MoS2 particles into nanosheets [39,40]. The 

MoS2 nanosheets are proved to improve the electrochemical 

performance of materials like Co3O4, polyethylene dioxythiophene 

(PEDOT), polyaniline (PANI), and Mn3O4 [29, 41-43]. The mixture of 

MoS2 and n-butyllithium (2.5 M in hexanes) was autoclaved at 900C 

for 12h with stirring, the product formed was filtered and washed 

with anhydrous hexane. It was vacuum dried and subjected to 

ultrasonication. The obtained suspension was then neutralized with 

1 M HCl and the product obtained was washed with distilled water-

methanol, finally, it is subjected to freeze-drying [44]. 

 

Three-dimensional flower-like molybdenum disulfide microspheres 

composed of nanosheets were prepared by a hydrothermal method 

using ammonium molybdate as the molybdenum source and 

thiourea as the sulfur source. Structural and morphological 

characterizations were performed by X-ray diffraction (XRD), 

scanning electron microscopy (SEM), transmission electron 

microscopy (TEM), energy-dispersive X-ray (EDX) spectroscopy, and 

X-ray photoelectron spectroscopy (XPS).  

 

The electrochemical properties of MoS2 electrode were studied by 

performing cyclic voltammetry (CV), galvanostatic charge-discharge 

analysis, and electrochemical impedance spectroscopy (EIS). When 

used as an electrode material for supercapacitor, the hybrid MoS2 

showed a high specific capacity of 518.7 F/g at a current density of 1 

A/g and 275 F/g at a high discharge current density of 10 A /g. In 

addition, a proportional supercapacitor composed of MoS2 showed 

high energy density. The outstanding performance of the MoS2 

electrode material indicates its great potential for applications in the 

high-performance energy storage system [45]. 

Molybdenum Oxide (MoO3) is a prominent transition metal oxide 

with rich polymorphism and structural litheness [7], with many 

valences and unique structure with outstanding specific capacitance 

[46]. The electrochromic and catalytic properties are important in 

storage media, gas sensors, and organic solar cells.  It possesses 

greater electrochromic and catalytic properties [17] that can 

potentially be functional in storage media [47], gas sensors [48] and 

humidity sensors [49], organic solar cells [50]. The oxidation states of 

molybdenum oxide range from + 2 to + 6 and predominantly exist in 

two primary forms, viz., molybdenum (IV) oxide and molybdenum 

(VI) oxide [51]. Solution combustion [52, 53], sol-gel [54], microwave 

[55], and green synthesis methods [56] are the common techniques 

preferred for the synthesis of molybdenum oxide nanoparticles. Of 

which, the hydrothermal procedure [57] is preferred for the 

preparation of molybdenum oxide nanoparticles. Molybdenum 

oxide nanoparticles are obtained in different morphologies such as 

nanobelts [58], nanoflowers [59], nanowires [60], and nanocubes 

[61] can be obtained. These morphologies are important in knowing 

the specific capacitance of the substantial. With the hydrothermal 

method, the effect of parameters such as temperature, pressure, 

and reaction time on the physiochemical performance of the 

material can be determined [62]. 

Synthesis of Molybdenum oxide nanoparticles 

Miao et al. reported the synthesis of Molybdenum Trioxide 

nanostructures by cost-effective metal-assisted chemical wet 

etching method, with this method material indicated a specific 

capacitance of 30.85 F/g in 0.5M Na2SO4 electrolyte solution [63].  

 

Wang et al. synthesized α-MoO3 nanorods through the hydrothermal 

method and observed that annealed α-MoO3 nanorods 

demonstrated excellent specific capacitance compared to 

hydrothermally obtain ones [64].  

 

Shakir et al. reported the preparation of orthorhombic molybdenum 

trioxide nanowires using a hydrothermal method which yielded a 

specific capacitance of 168 F /g at 0.5/ Ag current density and 97% 

cyclic retention in 1M H2SO4 electrolyte solution [65]. 

 

 In the above-reported works, very high concentrations of electrolyte 

were used for determining the electrochemical performance of the 

synthesized molybdenum oxide nanomaterials. In the synthesis of 

molybdenum oxide nanorods hydrothermal method is preferred, 

and its electrochemical studies were based on the low concentration 

of electrolyte, carrying exceptional rate competence and high 

specific capacitance. 
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Ultrasonication-assisted liquid-phase exfoliation method was 

considered for the preparation of MoS2 nanosheets [66]. 

Polyvinylpyrrolidone (PVP, MW ∼ 40,000) was dissolved in ethanol 

to bulk MoS2 powder. The mixture was ultrasonicated to exfoliate 

MoS2 nanosheets. The exfoliated MoS2 sheets which remained on 

top of the solution were subjected to post-treatment with isopropyl 

alcohol (IPA).  

 

The hydrothermal method was followed for the synthesis of 

Molybdenum oxide nanostructures. Ammonium Heptamolybdate 

Tetrahydrate solution was treated with 0.01M sodium dodecyl 

sulfate on stirring and pH was maintained to 3 with the dilute HCl.  

Hydrothermal treatment was given in the Teflon-lined stainless-steel 

autoclave 180°C for 24 h. the precipitate formed was washed with 

water and ethanol and the precipitate was obtained on 

centrifugation was subjected to drying at 60 °C overnight to get dry 

powder [1].  

 

With modified alumina powder in the solution of molybdenum(V) 

chloride in ethanol, Alumina/molybdenum nanocomposites were 

obtained. Modified alumina powder was subjected to calcined at low 

temperature to eliminate the organic residue. It was followed with 

reduction steps to form obtain 2–10 nm metallic nanoparticles on 

the surface of the alumina crystals. The method indicated the 

formation of microstructure with improved mechanical behaviour 

[67]. 

So, it is presumed that the electrochemical stability of the SnO2 could 

be improved by using MoS2 nanosheets along with the SnO2 

nanoparticles. There are very limited studies reported focussing on 

the supercapacitor application with the combination of MoS2–SnO2 

phases as nanocomposite [68]. The hydrothermal method is the 

widely used technique to prepare MoS2–SnO2 nanocomposite with 

the ligand exchange process [69], SnO2 nanoparticles are 

functionalized onto the surface of the MoS2 nanosheets at room 

temperature. The route is expected to be energy-saving and produce 

the MoS2–SnO2 nanocomposite which will serve as a good 

supercapacitor electrode material. 

 

According to Ziying et al., MoS2-RGO hybrids were prepared by self-

assembly of MoS2 NPs and GO nanosheets, followed by 

hydrothermal treatment [70]. 

In the study conducted by Yun et al., for the synthesis of MoS2/ GO 

nanocomposites, the bulk MoS2, was mixed with stock solutions of 

GO by sonication for 40 h, respectively. As a control, bulk MoS2 was 

sonicated alone in deionized water. The mixture was subjected to 

settling and then centrifuged to obtain the final precipitate [71]. 

As per Bin et al., a mixture of MoS2 or M-MoS2 in acetone was 

subjected to magnetic stirring at room temperature followed by 

sonication with the addition of epoxy resin. The contents will be 

subjected to vacuum distillation under stirring with a magnetic stirrer 

at 80 0C. On cooling a stoichiometric amount of curing agent (D230) 

corresponding to 100% of EP resin content was added and stirred for 

some time. The resulting mixture was cured and post-cured to obtain 

the final nanocomposite [72]. 

Amine-functionalized MoS2 and acyl chloride-coordinated ND, 

chemically conjugated nanodiamond (ND)/MoS2 nanocomposite was 

formed and its structure with morphology were analyzed to know 

the scattering of MoS2 on the ND platform. The study revealed that 

the efficient electron capacity of the ND/MoS2 nanocomposite was 

considerably greater than that of the MoS2 electrode alone. 

Therefore, the nanophase electrode showed higher electrochemical 

capacitance than that of the MoS2 electrode alone [73]. 

Characterization 

Powder X-ray diffraction (XRD) data were recorded on a 

diffractometer with Cu Kα radiation Transmission electron 

microscope [74]. 

The morphology of the as-synthesized molybdenum oxide 

nanorods was determined by Field Emission Scanning Electron 

Microscopy.  

Powder X-ray diffraction (XRD) data patterns were recorded on 

a diffractometer with Cu Kα radiation Transmission electron 

microscope 

The maximum absorbance of Molybdenum nanomaterials was 

determined using UV–visible spectroscopy employing UV/Vis 

spectrophotometer.  

FTIR spectra of the samples were obtained at ambient 

temperature using the KBr disk method employing an FTIR 

spectrophotometer.  

The electrochemical measurement of as-synthesized MoO3 

nanorods was analyzed by cyclic voltammetry, galvanometric 

charge-discharge, and electrochemical impedance 

spectroscopy [1]. 

Conclusion 

The review highlighted about the synthesis of molybdenum 

nanomaterials by different approaches, of which it is clear that 

the hydrothermal method is preferred for the synthesis of 

molybdenum-based nanomaterials.  

Also, the review indicated that the structural and morphological 

characterization study was done with XRD, SEM, TEM, EDX and 

XPS. Further study revealed that molybdenum-based 

nanomaterials have excellent electrochemical properties as it 

showed high energy density due to which can be considered in 

the application of high-performance energy storage systems. 
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