

1

Real Time Face Mask Recognition Using Haar

Cascades
1Dr. SafiaNaveed.S, Associate Professor, Department of Computer Science and Engineering, KCG College Of

Technology, Chennai. safia.research@gmail.com

2 Dr.Nabeena Ameen AP (Sel Gr), Department of Information Technology, B.S. Abdur Rahman Crescent Institute

of Science and Technology, Chennai, nabeena@crescent.education

 3 SRIRAM V, Student, Department of Computer Science and Engineering, KCG College Of Technology, Chennai.

sriramcse123@gmail.com

Abstract: The COVID-19 pandemic, caused by a novel coronavirus,

has been continuously spreading all over the world. The impact of

COVID-19 has been felt in almost all sectors of development. The

healthcare system is going through a crisis. Many precautionary

measures have been taken to reduce the spread of this disease, and

wearing a mask is one of them. We propose a system that restricts the

growth of COVID-19 by finding people who are not wearing any

facial masks in a smart city network where all the public places are

monitored with Closed-Circuit Television (CCTV) cameras. When a

person without a mask is detected, the corresponding authority is

informed through the city network. A deep learning architecture is

trained on a dataset that consists of images of people with and

without masks collected from various sources. The trained

architecture distinguished people with and without a facial mask for

previously unseen test data. It is hoped that our study will be a useful

tool to reduce the spread of this communicable disease in many

countries around the world.

The present scenario of COVID-19 demands an efficient

face mask detection application. The main goal of the

project is to implement this system at the entrances of

colleges, airports, hospitals, and offices where the chances

of spreading COVID-19 through contagion are relatively

higher. Reports indicate that wearing face masks while at

work clearly reduces the risk of transmission. It is an

object detection and classification problem with two

different classes (Mask and Without Mask). A hybrid

model using deep and classical machine learning for

detecting face masks will be presented. While entering the

place, everyone should scan their face and then enter,

ensuring they have a mask with them. If anyone is found

to be without a face mask, a beep alert will be generated as

every office starts to open. Throughout the nation, more

COVID-19 instances are continually being reported. It can

end if everyone adheres to the safety precautions.

Therefore, we expect that this module will assist in

spotting masks when people arrive at work.

Keywords: Machine Learning, Deep Learning, Image

Processing, Image detection, Haar Cascades.

1. INTRODUCTION

The spread of COVID-19 is increasingly worrying for

everyone in the world. This virus can be transmitted from

human to human through droplets and airborne.

To reduce the spread of COVID-19, everyone needs to

wear a face mask, do social distancing, evade crowd areas,

and always maintain their immune systems.

Face Recognition is a technique that matches stored models of

each human face in a group of people to identify a person

based on certain features of that person's face. Face

recognition is a natural method of recognizing and

authenticating people. Face recognition is an integral part of

people's everyday contact and lives. The security and

authentication of an individual are critical in every industry or

institution. As a result, there is a great deal of interest in

automated face recognition using computers or devices for

identity verification around the clock and even remotely in

today's world. Face recognition has emerged as one of the

most difficult and intriguing problems in pattern recognition

and image processing. With the aid of such technology, one

can easily detect a person's face by using a dataset of

identically matched appearances. The most effective approach

for detecting a person's face is to use Python in deep learning.

This method is useful in a variety of fields, including the

military, defense, schools, colleges, and universities, airlines,

banks, online web apps, gaming, and so on. Face masks are

now widely used as part of standard virus prevention

measures, especially during the COVID-19 virus outbreak.

Many individuals or organizations must be able to distinguish

whether people are wearing face masks at a given location or

time. This data's requirements should be very real-time and

automated. The challenging issue that can be mentioned in

face detection is inherent diversity in faces such as shape,

texture, color, having a beard, moustache, and/or glasses, and

even masks. From the experiments, the proposed algorithm is

very efficient and accurate in determining the facial

recognition and detection of individuals.

The main aim is to detect violations such as not wearing a

mask or not following social distancing in a workplace and

notify the officials. Technology has advanced tremendously

over the past century, from the Internet of Things (IoT) to

machine learning and deep learning. CNN is used in various

fields like medical, marine science, and many other

2. LITERATURE SURVEY

Mamata et al. (2014) defined face detection as a

procedure that has many applications like face tracking, pose

estimation, or compression. Face detection is a two-class

problem where we must decide if there is a face or not in a

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 45

user
Textbox

user
Textbox

user
Textbox

2

picture. This approach can be seen as a simplified solution to

the face recognition problem.

Adaboost is adaptive in the sense that subsequent

classifiers are tweaked in favor of instances misclassified by

previous classifiers. Adaboost generates and calls a new weak

classifier in each of a series of rounds from a set of training

images. This method can be used for both face detection and

face location. In this method, a standard face (such as frontal)

can be used. The advantages of this method are that it is very

simple to implement the algorithm and that it is easy to

determine the face locations such as nose, eyes, mouth, etc.

based on the correlation values.

The mask-face detection model is based on computer

vision and deep learning. The model is an integration between

deep learning and classical machine learning techniques with

OpenCV, tensor flow, and Keira. We have used deep transfer

learning for feature extraction and combined it with three

classical machine learning algorithms. We introduced a

comparison between them to find the most suitable algorithm

that achieved the highest accuracy and consumed the least

time in the process of training and detection.

The proposed system focuses on how to identify the

person on image/video stream wearing face mask with the

help of computer vision and deep learning algorithm

1. Train Deep learning model (MobileNetV2).

2. Apply mask detector over images / live video stream.

Most of the images were augmented by OpenCV. The set

of images were already labeled mask and no mask.

The images that were present were of different sizes and

resolutions, probably extracted from different sources or from

machines (cameras) of different resolutions.

Yassin Kortli et al. (2020) suggested that developing

biometric applications, such as facial recognition, has recently

become important in smart cities. Besides, many scientists and

engineers around the world have focused on establishing

increasingly robust and accurate algorithms and methods for

these types of systems and their application in everyday life.

These biometric factors make it possible to identify people's

identities based on their physiological or behavioral

characteristics. They also provide several advantages, for

example, the presence of a person in front of the sensor is

sufficient, and there is no need to remember several passwords

or confidential codes anymore.

Face Recognition

Three basic steps are used to develop a robust face

recognition system:

The face recognition system begins with the localization of
human faces in a particular image. The purpose of this step is
to determine if the input image contains human faces or not.
The variations in illumination and facial expression can
prevent proper face detection. To facilitate the design of a face
recognition system and make it more robust, pre-processing
steps are performed. Many techniques are used to detect and
locate the human face image, for example, the Viola-Jones

detector, the histogram of oriented gradient (HOG), and
principal component analysis (PCA). Also, the face detection
step can be used for video and image classification, object
detection, region-of-interest detection, and so on.

Optimization Techniques

 Naveed et al. [7] suggested few optimization techniques
such as Particle Swarm Optimization (PSO), Discrete Particle
Swarm Optimization (DPSO) and Fractional Order Discrete
Particle Swarm Optimization (FODPSO) Techniques based on
which the best or optimum features from the face of the
chauffeur can be selected to denote his drowsiness.

 Naveed et al. [8] also suggested that the region of interest

can be captured and the same region can be inspected

thoroughly in terms of pixel values, evaluating the degree of

noise present, analyzing the position of boundaries to study

the region of interest, analyze the fluctuating intensities across

the forehead region of the face and consider the edge effects

of the eyes

Face Recognition

This step considers the features extracted from the

background during the feature extraction step and compares

them with known faces stored in a specific database. There are

two general applications of face recognition: one is called

identification, and another is called verification. During the

identification step, a test face is compared with a set of faces,

aiming to find the most likely match. During the identity step,

a check face is as compared with a recognized face withinside

the database to be able to make the popularity or rejection

decision.Correlation filters (CFs), convolutional neural

networks (CNN), and k-nearest neighbor (K-NN) are known

to effectively address this task.

UdayTheja et al. (2020) discussed Corona virus disease

(COVID-19), an airborne infectious disease caused by a

newly discovered Corona virus. The best way to prevent or

slow down the transmissions is to have knowledge of the

COVID-19 virus, the disease it can cause, and how it passes.

There are many steps suggested by the WHO (World Health

Organization) to prevent the spread. One of which is wearing

medical masks, which is highly desirable even after the

lockdown period until a vaccine or medicine is invented.

This system aims at classifying whether a person is

wearing a mask or not by taking input from Images and real-

time streaming Videos.

This system aims at classifying whether a person is

wearing a mask or not by taking input from Images and Real

time streaming Videos.

The classification of the images is done by training the

model in 2 phases:

Phase 1: Face mask dataset is loaded into the system.

Different classifiers like MobileNetV2, ResNet50, and

VGG16 are used to generate a trained model.

Phase2: Load the face mask classifier model.

Detect faces in the images/video stream. Apply the

classifier to each face Roi. Classify the images to be With

Mask and Without Mask with Confidence.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 46

3

This system may then be interfaced with

Case 1: Existing access control system so that violators can be

restricted.

Case 2: There could be some scenarios in work places where

people may forget or just put off the mask when it becomes

uneasy for them to get accustomed to the new face masks.

3. METHODOLOGY

3.1 BlockDiagram

To predict whether a person has worn a mask correctly,

the initial stage would be to train the model using a proper

dataset. After training the classifier, an accurate face detection

model is required to detect faces. The model can classify

whether the person is wearing a mask or not.

The task here is to raise the accuracy of mask detection

without being too resource-heavy. This approach helps in

detecting faces in real-time, even on embedded devices like

the Raspberry Pi. The following classifier uses a pre-trained

model MobileNetV2 to predict whether the person is wearing

a mask or not.

 Fig 1

In order to train a custom face mask detector, we need to

break our project into two distinct phases, each with its own

respective sub-steps (as shown by Figure 1 above):

1. Training: Here we will focus on loading our face mask

detection dataset from disk, training a model (using

Kera’s/TensorFlow) on this dataset, and then serializing

the face mask detector to disk

2. Deployment: Once the face mask detector is trained, we

can then move on to loading the mask detector,

performing face detection, and then classifying each face

as with maskor without mask

3.2UseCaseDiagram

Use case diagrams are typically developed in the early

stage of development and people often apply use case

modeling for the following purposes:

 Specify the context of a system

 Capture the requirements of a system

 Validate a systems architecture

 Drive implementation and generate test cases

 Developed by analysts together with domain experts

Use cases share different kinds of relationships. Defining

the relationship between two use cases is the decision of the

software analysts of the use case diagram. A relationship

between two use cases is basically modeling the dependency

between the two use cases. The reuse of an existing use case

by using different types of relationships reduces the overall

effort required in developing a system.

 Fig 2

Over the above-mentioned figure 2 we have worked on the

Receiving Inputs and checking them from the user which

includes Add Picture, Check Faces, Check Eye, Check Mouth

and Check Nose

3.3DataFlowDiagram

A data flow diagram (DFD) maps out the flow of information

for any process or system. It uses defined symbols like

rectangles, circles, and arrows, plus short text labels, to show

data inputs, outputs, storage points, and the routes between

each destination. Data flowcharts can range from simple, even

hand-drawn process overviews, to in-depth, multi-level DFDs

that dig progressively deeper into how the data is handled.

They can be used to analyze an existing system or model a

new one.

Like all the best diagrams and charts, a DFD can often

visually “say” things that would be hard to explain in words,

and they work for both technical and nontechnical audiences,

from developers to CEOs. That is why DFDs remain so

popular after all these years. While they work well for data

flow software and systems, they are less applicable nowadays

to visualizing interactive, real-time, or database-oriented

software or systems.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 47

4

 Fig 3

 Here in figure 3, we are focusing on the Structure and Flow

of Data set Flow, where Training Data and Testing Data are

the Two branches of the data set and in Training Data, we

have without mask data and With Mask data are Categorized

3.4ClassDiagram

The Unified Modeling Language (UML) can help you

model systems in various ways. One of the more popular

types in UML is the class diagram. Popular among software

engineers to document software architecture, class diagrams

are a type of structure diagram because they describe what

must be present in the system being modeled. No matter your

level of familiarity with UML or class diagrams, our UML

software is designed to be simple and easy to use.

UML was set up as a standardized model to describe an

object-oriented programming approach. Since classes are the

building block of objects, class diagrams are the building

blocks of UML.

The various components in a class diagram can represent

the classes that will be programmed, the main objects, or the

interactions between classes and objects. The class shape itself

consists of a rectangle with three rows. The top row contains

the name of the class, the middle row contains the attributes of

the class, and the bottom section expresses the methods or

operations that the class may use. Classes and subclasses are

grouped together to show the static relationship between each

object.

 Fig 4

Over the Above Images stay as the origin for the solution

which consist of Components such as Local Data set, Train

Model, Face Mask Director, Evaluate Model, Apply Classifier

to Predict,detect face in Live Video, Extract Face Input, Show

Detection Result in video.

Where Train Model Receiving data from the data set and

processed and directed Towards the Face Mask Detector for

Further Moment. Which further moves to the Evaluate model

and Reaches the Apply Classifier to Product block.

On the other hand, Were We have inputs from the, detect

face in Live Video via, Extract Face Input to the, Apply

Classifier to Predict. Finally, which set to the Show Detection

Result in video.

3.5 Pre-processing

A compilation of data from the photos in this dataset for

masked face identification and application contained a lot of

repetitions and noise. Since a decent dataset determines how

accurate a model would be after being trained on it, the data

from the datasets were used. The repeats were then manually

eliminated once they had been processed. The faulty photos

that were discovered in the dataset were removed manually

using data cleaning. Finding these pictures was an important

step. As is widely known, dealing with corrupt photographs

was challenging, but with the help of sincere efforts, we

separated the work and cleaned the data set using mask

images and those without. removing, spotting, and fixing

mistakesin a dataset remove adverse effects from any

predictive model.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 48

https://www.lucidchart.com/pages/what-is-UML-unified-modeling-language
https://www.lucidchart.com/pages/examples/uml_diagram_tool
https://www.lucidchart.com/pages/examples/uml_diagram_tool

5

This part explains the procedure of pre-processing the

data and then training on data. First, we define a function

name sorted alphanumerically to sort the list in

lexicographical order. A function pre-processing is defined,

which takes the folder to the dataset as input, then loads all the

files from the folder and resizes the images according to the

SSDMNV2 model. Then the list is sorted using sorted

alphanumerically, and then the images are converted into

tensors. Then the list is converted to NumPy array for faster

calculation. After this, the process of data augmentation is

applied to increase the accuracy after training the model.

3.6 Algorithm

Machine learning

Machine learning is software that learns to perform a task

from a collection of examples rather than through a person

explicitly defining rules and formulas. This learning software

is called a model.

Teaching a model through examples is called training.

Train machine learning with Lobe

This version of Lobe learns to look at images using image

classification - categorizing an image into a single label

overall. We are working to expand to more types of problems

and data in future versions.

Image classification is categorizing an image into a single

label to represent its content. Apps using image classification

could:

 Tell you when someone is coming up your front steps

 Send you photos of a new bird that just started showing

up at your bird feeder

 Count the number of push-ups you have done in a

workout

 Alert you when a shelf is empty

 Read signs in your environment

Lobe is not doing any reasoning or understanding of the

content in your images. Image classification learns to find any

patterns from your images - things like textures, colors, and

shapes that can be used to separate your labels.

Haar Cascades Algorithm

A Haar classifier, or a Haar cascade classifier, is a

machine learning object detection program that identifies

objects in an image and video.

The algorithm can be explained in four stages:

 Calculating Haar Features

 Creating Integral Images

 Using AdaBoost

 Implementing Cascading Classifiers

It is important to remember that this algorithm requires a

lot of positive images of faces and negative images of non-

faces to train the classifier, like other machine learning

models.

Calculating Haar Features

The first step is to collect the Haar features. A Haar

feature is essentially calculations that are performed on

adjacent rectangular regions at a specific location in a

detection window. The calculation involves summing the

pixel intensities in each region and calculating the differences

between the sums. Here are some examples of Haar features

below.

 Fig 5

Where in figure 5 we have:

a) Edge Features

B) Line Features

c) Four - rectangle Features

Identifying these elements in a huge photograph can be

challenging. Integral images come into play in this situation

since they allow for a reduction in the number of operations.

Creating Integral Images

Instead of computing at every pixel, it instead creates sub-

rectangles and creates array references for each of those sub-

rectangles. These are then used to compute the Haar features.

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 49

6

 Fig 6

 Here in Figure 6,It is important to note that nearly all the

Haar features will be irrelevant when doing object detection,

because the only features that are important are those of the

object.

Ada boost Training

Ada boost essentially chooses the best features and trains

the classifiers to use them. It uses a combination of “weak

classifiers” to create a “strong classifier” that the algorithm

can use to detect objects.

By sliding a window across the input image and computing

Haar characteristics for each area of the image, weak learners

are produced. This distinction is contrasted with a learnt

threshold that distinguishes between non-objects and objects.

These are "weak classifiers," whereas a strong classifier

requires a lot of Haar characteristics to be accurate.

Fig 7

 In the above Figure 7 we have iteration part1 ,2 and 3

which are Gone through the process of Boosting and Final

Classifier / Strong Classifier is resulted. The last step

combines these weak learners into a strong learner

using cascading classifiers.

Implementing Cascading Classifiers

 Fig 8

On the Figure 8 where the cascade classifier is

composed of several stages, each of which contains a

group of weak learners. Boosting is used to train weak

learners, resulting in a highly accurate classifier from

the average prediction of all weak learners.

Based on this prediction, the classifier either decides

to go on to the next region (negative) or decides to

report that an object was identified (positive).

Because the bulk of the windows do not contain

anything of interest, stages are created to reject

negative samples as quickly as feasible.

Because classifying an object as a non-object would

significantly hurt your object detection system, it is crucial to

have a low false negative rate. You may watch a

demonstration of Haar cascades below. The red boxes

represent "positives “Model usage

A model is a piece of code. You can export your model

into a variety of industry-standard formats to run on Mac and

Windows, the web, or mobile and edge devices.

Labeling

Labeling is assigning categories to your images to create

examples that teach Lobe. These examples are commonly

known as a dataset. From this dataset, Lobe will learn to

automatically predict a label for a given image.

3.7Dataset

Import and label your images in Lobe

Images - import common image files directly from your

computer. Lobe supports JPEG, PNG, BMP, and Web

formats.

Camera - use any connected camera source to capture

images directly in Lobe. You can optionally provide a label

for these images. Hold down the camera button to capture a

burst of images.

The dataset consists of images containing images of

people wearing masks and images with people without masks.

Sample Dataset

No Mask

 Fig 9

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 50

7

We have figure 9 has a collection of data where people are

without mask.

Mask

 Fig 10

Here in Figure 10, we have a collection of data people with

mask

Import an existing dataset

Folders- import existing labeled images by using folder

names as the labels.

You can create new labels or edit existing ones by using

the text box in the bottom cornerof eachimage.

The max image size Lobe can process is 178,956,970

pixels. For a square image, that is about 13,300 x 13,300

pixels. We recommend staying lower resolution for faster

processing because Lobe will resize and crop your image to a

224 x 224 square.

Collect images that you expect to see in the real world

Lobe can only learn the patterns that exist in the images

you provide as examples. Collect images from the same

source you expect to use with your exported model.

Capture as many variations as possible

By gathering photographs under various circumstances, try to

capture all the differences that naturally occur. Check out

various backgrounds, lighting, orientations, and zoom levels.

This teaches Lobe what noise is and what portions of the

image are important for making predictions.

Make sure your content can be seen in the image's central

square.

Lobe crops the central square of your photographs while

training your model.

Label usage

Label for each desired prediction

Create a label for each category you want the model to

predict.

Catch-all-label

For each image, Lobe will always suggest one of the labels

you provide. Create a label called "None" to serve as a catch-

all bucket for photographs that do not fit any of your

preferred categories if you anticipate the model seeing images

that do not.

Gather as many different images as you can

For lesser situations, a general guideline is 100–1,000 photos

per label. Lobe has a minimal requirement of 5 photos per

label in order to get your project going quickly.

Have roughly equal number of images per label

The quantity of photos for each label should be equal. If the

data is unbalanced, Lobe will predict labels with more

photographs than others and discard labels with fewer images.

External cameras

Yes! The default camera attached to your computer will

be the main source used by Lobe. Use the source selector in

the Label or Use views to change cameras.

Make that the chosen camera is operational and connected

to your computer, and that the Lobe app has authorization to

utilize cameras, if you do not see an image from the camera.

Speed up labeling

 Use shift + click or cod/ctrl + click to multi-select many

images and label them at the same time.

 Capture a burst of labeled images from the webcam.

 Use folder names as labels to import existing datasets.

 Use your arrow keys to move the image selection and

label entirely with your keyboard

Import images from a CSV

Direct CSV use with Lobe is not possible. But you may

download images and run your exported model on a CSV of

image URLs using a Python command-line tool that we

designed in addition to an external desktop application.

Training

Your model gains the ability to anticipate the right labels

based on your samples during training. Your examples can be

compared to a set of flashcards. As it trains, your model will

repeatedly scan the flashcards for patterns that will help it

identify the correct answers. Lobe automatically starts training

when your examples meet the minimum requirements. To

start training, you need:

Imported images to label as examples

At least two labels

At least five images per label

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 51

8

Lobe will also follow best practices to continue training

when you make changes to your examples. If you make large

changes or add/remove labels, Lobe will reset training and

start training a new model.

After automatic training has completed, you can manually

optimize your model to train for longer for better real-world

performance (File > Optimize Model).

Training time

Depending on how challenging it is to discriminate between

the labels in your examples and how many examples you

have, training time can vary greatly. It can take anywhere

from minutes to hours, and for very big situations, it can even

take days.

To get an estimated time, simply hover your cursor over the

training progress. This estimated training time is changed

every few seconds based on your progress and the processing

speed of your machine. If you are using your computer for

other tasks, you can see fluctuations in the CPU and memory

that are accessible.

Train the model

 history = model.fit_generator(train_generator,

epochs=10,

validation_data=validation_generator,

callbacks=[checkpoint])

Train for longer

When training has completed, you can optimize your

model by selecting File > Optimize Model. Optimizing a

model performs additional training and can take much longer

to complete, but will generally help find a better version of

your model.

While optimizing, Lobe will keep training for as long as

your model is improving and does not have a set end-time.

Change themodel architecture

Without any setup or configuration, Lobe chooses the ideal

model architecture for your situation. Project Accuracy: a

bigger model with generally better accuracy on more

challenging issues but longer prediction periods and memory

use.

• Speed: A smaller model may have a lesser accuracy but a

faster prediction speed and use of memory. The Raspberry Pi

or other edge devices can also benefit from this model's

optimization.

Changing your project will automatically train a new model

and reset any prior training that has already been done.

Training results

 Your results let you know which photos your model

accurately and erroneously predicts. Red colors indicate

inaccurate predictions, whereas green markings indicate

accurate ones. How confident the model was in its

prediction is shown by the width of the label bar.Whether

your model is successfully learning all the labels with

View > All Images selected.

 Approximately how well it will work on new images with

View > Test Images selected. Learn more about test

images.

 Which images and labels confuse your model by selecting

your individual labels in the sidebar.

Test images

Test images are a random subset of your examples that

Lobe hides from your model during training. Lobe

automatically splits your examples into two parts:

 Random 80% is used to train your model.

 Random 20% is held out and used to test your model.

Play

Play with the trained model

To test your model on fresh images in real time, use

photographs from your PC or the webcam as a video feed.

Look for trends where your model is producing inaccurate

images and actively try to fool it. By providing input on the

model's predictions, you may help it get better.

Correct an incorrect prediction

You can directly update the prediction text box and add the

image and label as an example to provide feedback to your

model.

Alternately, you can provide an example by clicking the

image's proper or incorrect buttons.

To keep getting better, Lobe will automatically train with

these fresh examples.

View multiple images at once

You can only view one image at a time or stream video

using your camera right now export

Using the model

Your model is a set of data files that other applications can use

to make forecasts. Both the model's structure and the weights

that come from training are stored in these files.

To construct an API, you may utilize the model files either

locally in your app or in the majority of the major cloud

platforms. To aid in the early stages of your app development,

Lobe additionally offers your model as a local API.

Export option

For leveraging models, Lobe offers a several workflows:

utilizing a local API, customizing beginning projects, or

interacting directly with model files.

Integrate with an external app

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 52

9

Check whether the other app you are using with Lobe can load

and run model files directly or if it needs to call an API to

obtain predictions via a network.

Using an API for predictions

You can create a network request to obtain predictions from

your model if your intended app can do POST requests,

handle JSON, and base64 encode images.

You can utilize the Lobe Connect local API with no additional

settings if the app is already operating locally on the same

computer or network as Lobe, such as Origami Studio. For the

Lobe Connect local API to work, Lobe must be running and

your project open.

The 'Create an API for flexibility' section below describes

how to host your model as an external API if your intended

app is operating in a different environment than Lobe or you

want to have predictions without the Lobe app. open.

Loading model files directly

Choose the right Model File export option for your app if the

intended app can import and run external models.

Look for officially supported converters provided by the

desired format if Lobe does not yet support the export, such as

TensorRT or OpenVINO. In most cases, a converter from

ONNX or TensorFlow model files into the final format is

available.

Create an API for flexibility

One of the most flexible methods to connect apps to use your

model is by developing a REST API. You can run your model

on your own computer or an edge device like a Raspberry Pi,

distribute it to a variety of cloud providers, or call it as a

service from other products.

Check out Lobe Connect to prototype or experiment with

using an API. Check out REST Server for an example using

Python and Flask with deployment instructions to Azure App

Service on how to build one up yourself to run in any location.

Use the TensorFlow.js export option and look at the sample

code in the export package for loading and running the model

on an image to construct an API using a Node server such as

Express.

Use or customize a starter project

Check out the Web Sample beginning project, which uses

TensorFlow.js without requiring a backend server, if you wish

to make predictions in the browser. For quicker load times

and prediction speed at the risk of possibly lesser accuracy

when using TensorFlow.js in the browser, we advise choosing

the Speed model under File > Project Settings.

For a sample utilizing CoreML for iPhone or iPad apps, see

iOS App if you wish to execute your model in a mobile

environment. For a sample utilizing TensorFlow Lite to run

on an Android device, see Android App. For mobile apps, we

advise choosing the Speed model from File > Project Settings

because it can make predictions more quickly but at the risk of

less accuracy.

Classifying images on your computer

You can export your model as TensorFlow and use the

ImageTools desktop app to run your model on a folder of

images or a spreadsheet of image URLs.

Write an app from scratch

If you have more experience as a developer, you can

export model files directly and use their underlying

frameworks such as TensorFlow, CoreML, or ONNX.

Where applicable, we recommend using our libraries

inPython and .NET for working with Lobe exports as they

provide useful helper functions for loading and processing

data, as well as formatting return values and even working

with the local API for quickly prototyping.

Local Python app or hosted on Azure, Google Cloud, or AWS

TensorFlow is the model export format. TensorFlow's Saved

Model is a commonly used file format in Python programmers

that use TensorFlow 1.x or 2.x. TensorFlow web services can

deploy TensorFlow Saved Model files to execute inference as

an API on the cloud. For an example of how to run the

TensorFlow export, see our Python SDK.

Apple iOS

In order to create apps for iOS, iPad, and Mac, export your

model as Core ML. If you require low latency and a tiny

memory footprint on iOS, use the Speed model from File >

Project Settings.

Android or Raspberry Pi

For use in mobile and IoT applications, export your model as

TensorFlow Lite. If you require minimal latency and a smaller

memory footprint on the edge, choose the Speed model from

File > Project Settings.

ONNX

Export your model as ONNX for cross-compatible

applications, including edge devices and .NET applications.

Web Applications

Export your model as TensorFlow.js for browser-based

JavaScript or server-side Node applications. Use the Speed

model from File > Project Settings if you need low latency

and a smaller memory footprint in the browser.

Lobe Connect

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 53

https://github.com/lobe/image-tools
https://github.com/lobe/image-tools
https://github.com/lobe/lobe-python
https://github.com/lobe/lobe.NET
https://microsoft.github.io/onnxruntime/
https://www.tensorflow.org/js

10

Lobe will host a local API to call your model via a REST

endpoint. Use this option to mock a service that runs

predictions while developing your app.

To run the local API

Capture an input image as a base64 string. Make sure the

base64string doesn't include the 'data: image/jpeg;base64,'

prefix that sometimes is added.

Spreadsheets and local images

Export your model as a TensorFlowSavedModel to use

with our helper code for running predictions on spreadsheets

of image URLs or local image files.

 Fig 11

Here Figure 11 are the base of display of Label, Train and Use

to start training your model import and label some images and

clarification.

3.9 Sample Screenshots

With Mask

 Fig 12

 Fig 13

 Fig 14

 Fig 15

Without Mask

 Figure 16

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 54

https://github.com/lobe/image-tools

11

 Fig 17

 Fig 18

 Fig 19

4. RESULTS

4.1 Confusion Matrix

The tests are conducted using the recall metrics,

Precision, F1-score, and the corresponding macro average and

weighted avg, with the goal of illustrating the potential utility

of the system. Utilizing these measures has as its goal

evaluating the system from many angles. Recall and precision

show how well the model can identify genuine positives.

Recall considers both the model's accuracy in identifying false

positives and false negatives. False positives happen when an

object is classified as a face in this case of face detection using

masks. Since it is untrue that a plant is a positive face, the

system, for instance, frames a plant as a face with a face mask.

There are several reasons why this might happen in our

system, which is why it takes a lot of effort to gather a sizable

database so that the model being trained can better identify the

target classes (faces). False negatives happen when a face is

missed in the initial step of recognition because it has covered

parts that make categorization challenging; in this approach,

the initial classifier is a pre-made tool. The F1-score, on the

other hand, gives an overall assessment of the system's

performance. It combines precision and recall (in a single

value), with 0 denoting poor performance and 1 denoting the

best performance (all cases properly detected).

 Fig 20

 Figure 20 - Confusion matrix classifier

 Fig 21

 Figure 21 - Confusion matrix with a face mask

 Fig 22

Figure 22- Confusion matrix without mask

4.2 Performance Metrics

20% of the data are used for testing and the remaining

data are used to train the face classification model. For

training data, a 99.6% accuracy is achieved at about 10 epochs

after the model reaches convergence. Finally, after comparing

the test data and trained model, the confusion matrix had the

following values: 440 true positives (VP), 1 false negative, 4

false positives, and 996 true negatives. When comparing the

two graphs, there is a correlation between the high accuracy

attained and the minimal FN and FP detection during training.

Equations are used to describe specificity, sensitivity,

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 55

12

accuracy, and precision. Aside from thatit has an accuracy of

99.65%, precision of 99.09%, sensitivity of 99.77%, and

specificity of 99.6%.

Accuracy = (VP + VN)/Total

Precision = VP/(VP + FP)

Sensitivity = VP/(VP + FN)

Specificity = VN/(VN + FP)

Lobeusestwo popularmodelsforimageclassification:

1. Accuracy: ResNet-50V2

Arguments

 include_top: whether to include the fully-connected layer at

the top of the network.

 weights: one of None (random initialization), 'ImageNet’ (pre-

training on ImageNet), or the path to the weights file to be

loaded.

 input_tensor: optional Keras tensor (i.e., output of layers.

Input ()) to use as image input for the model.

 input_shape: optional shape tuple,

 pooling: Optional pooling mode for feature extraction

when include_top is False.

 None means that the output of the model will be the 4D tensor

output of the last convolutional block.

 avg means that global average pooling will be applied to the

output of the last convolutional block, and thus the output of

the model will be a 2D tensor.

 max means that global max pooling will be applied.

 classes: optional number of classes to classify images into,

only to be specified if include top is True, and if

no weights argument is specified.

 classifier_activation: A str or callable. The activation function

to use on the "top" layer. Ignored unless include_top=True.

Set classifier_activation=None to return the logits of the "top"

layer. When loading pretrained

weights, classifier_activation can only be None or "softmax".

Arguments

 num_classes (int): Number of classes

 width_mult (float): Width multiplier - adjusts number of

channels in each layer by this amount

 inverted_residual_setting: Network structure

 round_nearest (int): Round the number of channels in each

layer to be a multiple of this number

 Set to 1 to turn off rounding

 block: Module specifying inverted residual building block

for mobilenet

 norm_layer: Module specifying the normalization layer to

use

Both models utilize transfer learning with pretrained

weights from the ImageNetdataset. Transfer learning lets you

train better models with less data and gives a better starting

point for training on larger data.

4.3 ROC Analysis

 Fig 23

Figure 23- Training loss vs. accuracy classifier

 Fig 24

Figure 24- Training loss vs. accuracy without a face mask

 Fig 25

Figure 25-Training loss vs. accuracy without a face mask

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 56

https://arxiv.org/abs/1603.05027
https://cs231n.github.io/transfer-learning/
http://www.image-net.org/

13

5. CONCLUSION

There should be action made to slow the COVID-19

pandemic's spread. Our intention is to give users a pleasant

learning and information-gathering experience. The computer

models that were used in this project This method produced

speedy and precise results for facial recognition. The COVID-

19 mask detector we are making here today has the potential

to be utilized to help make sure that you and others are safe

(but I will leave that up to the medical professionals to decide

on, implement, and distribute in the wild).

This prototype system enables face identification of

wearers of masks as well as those who are not, and it might be

applied as a low-computing-consumption suggestion for

personnel access control.Images are used to test the two

models of this system, improving precision, and optimizing

each model. The name tag and likelihood of success are

provided for the person's face that was successfully classified

from the database. The system's three stages made it possible

to extract the crucial features of a person's face and then

utilizes a straightforward neural network to perform the

classification task. In this regard, the studies conducted

showed that using "Face Embeddings" as input to the neural

network produced satisfactory results.

Because the database was created for this stage with a

small number of participants, even though it is made up of

numerous photos and has little variability, it is possible to

notice an over-adjustment during training. The technique

does, however, have the potential to be utilized in other facial

recognition applications. It should be noted that if a face

cannot be in the database, it will still be recognized, but a tag

indicating whether the individual is wearing a mask, "mask"

or "no mask," will be added.It should be remembered that the

system uses a confidence level of 0.6 to determine whether a

face belongs to a specific person. The accuracy is 99.65%

when determining whether persons are wearing masks or not.

With test data from persons who do not wear masks, the facial

recognition model has an accuracy of 99.96%, and with test

data from people who do, it has an accuracy of 99.52%. This

lays the groundwork for future studies that may deepen the

understanding of this area.

6. FUTURE WORK

Face mask human recognition has several uses in a

variety of fields. A human face has several features that stand

out and may be distinguished from many other objects. It

locates faces by eliminating basic features like the eyes, nose,

and mouth, among others, and then makes use of them to

recognize a face. Usually, a fact classifier qualified and

accommodating to distinguish between facial and non-facial

parts is used. Human faces also have distinctive surfaces that

can be used to distinguish them from other objects.

Additionally, the edges of highlights can help to identify

objects from faces the different techniques are dependent on

the specific requirements of the application. Every strategy

has advantages and disadvantages; thus, we must choose the

optimal strategy based on the situation. Marketers are

becoming more interested in face detection. It can be utilized

in a variety of settings, including airports, where it can be

crucial to identify whether travelers are wearing masks.

Videos of travelers’ data may be stored in the system at the

entrance. a hospital This system can be combined with CCTV

cameras, and the data from those cameras may be used to

check whether their employees are wearing masks. The

spectrum of this system's application includes security

systems in many different public spaces, including malls,

hospitals, IT firms, and others.

Therefore, it should be taken into consideration to

combine the first and second stages into one model in the

future and to develop a unique algorithm that searches for

faces both with and without masks. This prevents identifying

faces with and without mas after using the Open CV face

detector first.

This will speed up the processing time and strengthen the

model. Additionally, it is suggested that a comparison of the

models used for learning transfer be conducted in the future in

order to identify the best model and network trained under

unfavorable evaluation conditions. The final models can be

compacted and deployed after they have finished training.

REFERENCES

[1] World Health Organization et al. Coronavirus disease 2019 (covid-19):

situation report, 96. 2020. - Google Search.

(n.d.).https://www.who.int/docs/default-source/coronaviruse/situation-
reports/20200816-covid-19-sitrep-209.pdf?sfvrsn=5dde1ca2_2.

[2] Social distancing, surveillance, and stronger health systems as keys to

controlling COVID-19 Pandemic,PAHODirector says-
PAHO/WHO|PanAmericanHealthOrganization.(n.d.).https://www.paho.o

rg/en/news/2-6-2020-social-distancing-surveillance-and-stronger-health-

systems-keys-controlling-covid-19.

[3] V.C.C.Cheng,S.C.Wong,V.W.M.Chuang,S.Y.C.So,J.H.K.

Chen,S.Sridhar,K.K.W.To,J.F.W.Chan, I.F.N.Hung,and P.L.Ho, et al.

“The role of community-wide wearing of face mask for control of
coronavirus disease 2019 (COVID-19) epidemic due to SARS-CoV-2”,

J. Infect. vol. 81, pp. 107–114, 2020, [GoogleScholar][CrossRef]

[PubMed].
[4] K. Dang, andS. Sharma, “Review and comparison of face detection

algorithms”, In Proceedings of the 7thInternational Conference

Confluence 2017 on Cloud Computing, Data Science and Engineering,
Noida, India, January2017, vol. 12–13, pp. 629–633. [Google Scholar]

[5] G.J. Chowdary, N.S. Punn, S.K. Sonbhadra, and S. Agarwal, “Face

Mask Detection using Transfer Learning ofInceptionV3, in:
International Conference on Big Data Analytics, Springer”, Cham, 2020,

pp. 81-90, pp. 1–11, doi:10.1007/978-3-030-66665-1_6.

[6] N. Abbassi, R. Helaly, M. A. Hajjaji, and A. Mtibaa, “A deep learning
facial emotion classification system: aVGGNet-19basedapproach,” in

Proceedings of the 202020thInternational ConferenceonSciencesand

Techniques of Automatic Control and Computer Engineering (STA),
IEEE, Monastir, Tunisia, December 2020, pp. 271–276.

[7] Early Diabetes Discovery from Tongue Images,Safi Naveed S, Geetha

G and Leninisha S, The Computer Journal, 2020,
https://doi.org/10.1093/comjnl/bxaa022

[8] Intelligent Diabetes Detection System based on Tongue Datasets, Safi

Naveed S, GurunathanGeetha , Current Medical Imaging Reviews

2019;15(7):672-678, doi: 10.2174/1573405614666181009133414

[9] R. Helaly, M. A. Hajjaji, F. M’Sahli, and A. Mtibaa, “Deep convolution
neural network implementation foremotionrecognitionsystem,”in

Proceedingsofthe202020thInternationalConferenceonSciencesandTechni

ques of Automatic Control and Computer Engineering (STA), IEEE,
Monastir, Tunisia,December 2020, pp. 261–265.

[10] “Mask Detect” Application. Available

online:https://play.google.com/store/apps/details?id=es.upv.mastermovil

es.intemasc.rec(accessedon14August2021)

Journal Of Technology || Issn No:1012-3407 || Vol 13 Issue 11

Page No: 57

https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200816-covid-19-sitrep-209.pdf%3fsfvrsn%3d5dde1ca2_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200816-covid-19-sitrep-209.pdf%3fsfvrsn%3d5dde1ca2_2
https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200816-covid-19-sitrep-209.pdf%3fsfvrsn%3d5dde1ca2_2
https://www.paho.org/en/news/2-6-2020-social-distancing-surveillance-and-stronger-health-systems-keys-controlling-covid-19
https://www.paho.org/en/news/2-6-2020-social-distancing-surveillance-and-stronger-health-systems-keys-controlling-covid-19
https://www.paho.org/en/news/2-6-2020-social-distancing-surveillance-and-stronger-health-systems-keys-controlling-covid-19
https://www.paho.org/en/news/2-6-2020-social-distancing-surveillance-and-stronger-health-systems-keys-controlling-covid-19
https://pubmed.ncbi.nlm.nih.gov/?term=Naveed+S&cauthor_id=32008515
https://pubmed.ncbi.nlm.nih.gov/?term=Naveed+S&cauthor_id=32008515
https://pubmed.ncbi.nlm.nih.gov/?term=Geetha+G&cauthor_id=32008515

	1. Introduction
	The main aim is to detect violations such as not wearing a mask or not following social distancing in a workplace and notify the officials. Technology has advanced tremendously over the past century, from the Internet of Things (IoT) to machine learni...
	2. Literature Survey
	3. Methodology
	Fig 3
	Here in figure 3, we are focusing on the Structure and Flow of Data set Flow, where Training Data and Testing Data are the Two branches of the data set and in Training Data, we have without mask data and With Mask data are Categorized
	3.4ClassDiagram
	Fig 4
	Over the Above Images stay as the origin for the solution which consist of Components such as Local Data set, Train Model, Face Mask Director, Evaluate Model, Apply Classifier to Predict,detect face in Live Video, Extract Face Input, Show Detection Re...
	Where Train Model Receiving data from the data set and processed and directed Towards the Face Mask Detector for Further Moment. Which further moves to the Evaluate model and Reaches the Apply Classifier to Product block.
	On the other hand, Were We have inputs from the, detect face in Live Video via, Extract Face Input to the, Apply Classifier to Predict. Finally, which set to the Show Detection Result in video.
	3.5 Pre-processing
	3.6 Algorithm
	Machine learning
	Train machine learning with Lobe
	Haar Cascades Algorithm
	Calculating Haar Features
	Creating Integral Images
	Ada boost Training
	Implementing Cascading Classifiers
	On the Figure 8 where the cascade classifier is composed of several stages, each of which contains a group of weak learners. Boosting is used to train weak learners, resulting in a highly accurate classifier from the average prediction of all weak lea...
	Based on this prediction, the classifier either decides to go on to the next region (negative) or decides to report that an object was identified (positive).
	Because the bulk of the windows do not contain anything of interest, stages are created to reject negative samples as quickly as feasible.
	Because classifying an object as a non-object would significantly hurt your object detection system, it is crucial to have a low false negative rate. You may watch a demonstration of Haar cascades below. The red boxes represent "positives “Model usage
	Labeling
	3.7Dataset
	Import and label your images in Lobe
	Sample Dataset
	No Mask
	We have figure 9 has a collection of data where people are without mask.
	Mask
	Here in Figure 10, we have a collection of data people with mask
	Import an existing dataset
	Collect images that you expect to see in the real world
	Capture as many variations as possible
	By gathering photographs under various circumstances, try to capture all the differences that naturally occur. Check out various backgrounds, lighting, orientations, and zoom levels. This teaches Lobe what noise is and what portions of the image are i...
	Make sure your content can be seen in the image's central square.
	Lobe crops the central square of your photographs while training your model.
	Label usage
	Label for each desired prediction
	Catch-all-label
	Gather as many different images as you can
	Have roughly equal number of images per label
	The quantity of photos for each label should be equal. If the data is unbalanced, Lobe will predict labels with more photographs than others and discard labels with fewer images.
	External cameras
	Speed up labeling
	Import images from a CSV
	Training
	Training time
	Depending on how challenging it is to discriminate between the labels in your examples and how many examples you have, training time can vary greatly. It can take anywhere from minutes to hours, and for very big situations, it can even take days.
	To get an estimated time, simply hover your cursor over the training progress. This estimated training time is changed every few seconds based on your progress and the processing speed of your machine. If you are using your computer for other tasks, y...
	Train the model
	Train for longer
	Change themodel architecture
	Without any setup or configuration, Lobe chooses the ideal model architecture for your situation. Project Accuracy: a bigger model with generally better accuracy on more challenging issues but longer prediction periods and memory use.
	• Speed: A smaller model may have a lesser accuracy but a faster prediction speed and use of memory. The Raspberry Pi or other edge devices can also benefit from this model's optimization.
	Changing your project will automatically train a new model and reset any prior training that has already been done.
	Training results
	Test images
	Play
	Play with the trained model
	To test your model on fresh images in real time, use photographs from your PC or the webcam as a video feed. Look for trends where your model is producing inaccurate images and actively try to fool it. By providing input on the model's predictions, yo...
	Correct an incorrect prediction
	You can directly update the prediction text box and add the image and label as an example to provide feedback to your model.
	Alternately, you can provide an example by clicking the image's proper or incorrect buttons.
	To keep getting better, Lobe will automatically train with these fresh examples.
	View multiple images at once
	You can only view one image at a time or stream video using your camera right now export
	Using the model
	Your model is a set of data files that other applications can use to make forecasts. Both the model's structure and the weights that come from training are stored in these files.
	To construct an API, you may utilize the model files either locally in your app or in the majority of the major cloud platforms. To aid in the early stages of your app development, Lobe additionally offers your model as a local API.
	Export option
	Integrate with an external app
	Check whether the other app you are using with Lobe can load and run model files directly or if it needs to call an API to obtain predictions via a network.
	Using an API for predictions
	You can create a network request to obtain predictions from your model if your intended app can do POST requests, handle JSON, and base64 encode images.
	You can utilize the Lobe Connect local API with no additional settings if the app is already operating locally on the same computer or network as Lobe, such as Origami Studio. For the Lobe Connect local API to work, Lobe must be running and your proje...
	The 'Create an API for flexibility' section below describes how to host your model as an external API if your intended app is operating in a different environment than Lobe or you want to have predictions without the Lobe app. open.
	Loading model files directly
	Choose the right Model File export option for your app if the intended app can import and run external models.
	Look for officially supported converters provided by the desired format if Lobe does not yet support the export, such as TensorRT or OpenVINO. In most cases, a converter from ONNX or TensorFlow model files into the final format is available.
	Create an API for flexibility
	One of the most flexible methods to connect apps to use your model is by developing a REST API. You can run your model on your own computer or an edge device like a Raspberry Pi, distribute it to a variety of cloud providers, or call it as a service f...
	Check out Lobe Connect to prototype or experiment with using an API. Check out REST Server for an example using Python and Flask with deployment instructions to Azure App Service on how to build one up yourself to run in any location.
	Use the TensorFlow.js export option and look at the sample code in the export package for loading and running the model on an image to construct an API using a Node server such as Express.
	Use or customize a starter project
	Check out the Web Sample beginning project, which uses TensorFlow.js without requiring a backend server, if you wish to make predictions in the browser. For quicker load times and prediction speed at the risk of possibly lesser accuracy when using Ten...
	For a sample utilizing CoreML for iPhone or iPad apps, see iOS App if you wish to execute your model in a mobile environment. For a sample utilizing TensorFlow Lite to run on an Android device, see Android App. For mobile apps, we advise choosing the ...
	Classifying images on your computer
	Write an app from scratch
	Local Python app or hosted on Azure, Google Cloud, or AWS
	TensorFlow is the model export format. TensorFlow's Saved Model is a commonly used file format in Python programmers that use TensorFlow 1.x or 2.x. TensorFlow web services can deploy TensorFlow Saved Model files to execute inference as an API on the ...
	Apple iOS
	Android or Raspberry Pi
	ONNX
	Web Applications
	Lobe Connect
	Spreadsheets and local images
	3.9 Sample Screenshots
	With Mask
	Without Mask

	4. Results
	4.1 Confusion Matrix

	Figure 20 - Confusion matrix classifier
	Figure 21 - Confusion matrix with a face mask
	Figure 22- Confusion matrix without mask
	4.2 Performance Metrics
	Arguments
	Arguments (1)
	4.3 ROC Analysis

	5. Conclusion
	6. Future Work
	References

