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Abstract—Optical Character Recognition (OCR) has emerged
as a pivotal technology for digitizing handwritten text, en-
abling the conversion of physical documents into machine-
readable formats. This study compares three prominent OCR
systems—EasyOCR, Tesseract OCR, and Transformer-based
OCR (TrOCR)—assessing their accuracy, processing speed, and
adaptability to diverse handwritten datasets. Our analysis reveals
that EasyOCR consistently achieves an accuracy exceeding 90%,
surpassing Tesseract OCR and TrOCR, which typically range
between 75% and 85% on standard benchmarks [1]. We examine
the architectural differences among these systems, highlighting
factors influencing their performance, and evaluate the role of
preprocessing techniques in enhancing recognition accuracy. This
comprehensive survey aims to elucidate the strengths, limitations,
and potential applications of these OCR systems, contributing to
the advancement of handwritten text recognition technologies.

Index Terms—Optical Character Recognition, EasyOCR,
Tesseract OCR, TrOCR, Handwritten Text Recognition, Prepro-
cessing Techniques, Model Comparison

I. INTRODUCTION

Optical Character Recognition (OCR), the process of trans-
forming text images into editable digital data, has fundamen-
tally altered how we interact with printed and handwritten
documents [2]. Handwritten text recognition, a challenging
subset of OCR, is vital for applications such as digitizing
historical archives, automating data entry, and improving ac-
cessibility for visually impaired individuals [3]. These appli-
cations span industries like education, healthcare, and finance,
where accurate interpretation of handwritten notes and forms
can preserve cultural heritage and streamline workflows [4].
However, recognizing handwritten text is complex due to vari-
ability in handwriting styles influenced by education, cultural
background, and personal habits [5]. Inconsistent character
formation, background noise from textured surfaces, and skew

or orientation issues further complicate the task [6]. More-
over, the limited availability of annotated handwritten datasets
hinders the development of robust recognition systems [7].
Recent advancements in machine learning, particularly deep
learning, have shown significant promise in addressing these
challenges [8]. This paper provides a comparative analysis
of EasyOCR, Tesseract OCR, and TrOCR, evaluating their
effectiveness in handwritten text recognition and identifying
their unique strengths and weaknesses.

II. LITERATURE OVERVIEW ON HANDWRITTEN TEXT

This section presents a systematic review of prior research
on handwritten text recognition, encompassing traditional
OCR techniques, deep learning-based models, hybrid architec-
tures, and modern transformer-based systems. These studies
collectively address challenges such as noise, cursive hand-
writing, and complex scripts, offering insights into improving
recognition accuracy and performance.

Ingle et al. developed a scalable handwritten text recog-
nition system using Convolutional Neural Networks (CNNs),
a type of neural network optimized for image processing. By
leveraging data augmentation and advanced training strategies,
they achieved state-of-the-art results on benchmark datasets,
highlighting the potential of deep learning in this field [1].
Another study proposed a novel method combining EasyOCR
with regular expressions to extract handwritten text from
images, segmenting them into smaller regions for efficient
character recognition [2]. This approach effectively manages
handwriting variability and noise, providing a practical digiti-
zation solution [3]. Smith offered a comprehensive overview
of Tesseract OCR, an open-source engine initially developed
by Hewlett-Packard and later enhanced by Google. The paper
emphasizes Tesseract’s line-finding and adaptive classification
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techniques, which contributed to its strong performance in the
UNLV Fourth Annual Test of OCR Accuracy [4].

The advent of TrOCR introduced a transformer-based ap-
proach to end-to-end text recognition, utilizing the Trans-
former architecture—originally designed for natural language
processing—to improve efficiency and accuracy for both
printed and handwritten text [5]. A hybrid model integrating
CNNs and RNNs with Connectionist Temporal Classifica-
tion (CTC) was proposed for online handwriting recognition,
yielding promising results on Devanagari and Bangla datasets
without requiring a lexicon [6]. Preprocessing techniques were
explored in a study using FineReader 7.0, demonstrating
that addressing geometric distortions and noise significantly
enhances OCR performance, particularly for camera-captured
images [7]. The Handwritten Text Recognition (H2TR) model
combined CNNs with RNNs and Long Short-Term Memory
(LSTM) units—specialized RNNs capable of learning long-
term dependencies—achieving high accuracy on the IAM and
RIMES databases [8].

For historical documents, a method employing fully convo-
lutional networks for layout analysis and RNNs for character
recognition achieved robust performance with minimal train-
ing data, advancing OCR applications in archival digitization
[9]. A mobile phone-based system utilized preprocessing,
segmentation, feature extraction, and LSTM classification to
tackle noise and variability in handwritten text captured by
cameras [10]. A hybrid Hidden Markov Model (HMM) and
Artificial Neural Network (ANN) approach improved offline
handwritten text recognition by incorporating slope correction
and size normalization, achieving state-of-the-art results on the
IAM database [11]. España-Boquera et al. refined this hybrid
HMM/ANN model, enhancing recognition accuracy through
supervised learning techniques [12]. Kumar and Singh investi-
gated the application of LSTMs in OCR systems, emphasizing
their ability to model sequential patterns in handwritten text
[13]. Patel et al. proposed a deep learning framework for
multi-script handwritten text recognition, integrating CNNs
and attention mechanisms to handle diverse writing systems
[14].

Additional research has further enriched the field. Zhang
et al. introduced a generative adversarial network (GAN)-
based approach to synthesize handwritten text, addressing the
scarcity of training data [15]. Li and Wang explored transfer
learning in OCR, adapting pre-trained models to new hand-
writing styles with limited samples [16]. Gupta et al. proposed
a multi-task learning framework combining text detection
and recognition, improving efficiency in real-time applications
[17]. Chen et al. developed a noise-robust OCR system us-
ing attention-based denoising, enhancing performance on de-
graded documents [18]. Kim and Lee introduced a lightweight
CNN architecture for resource-constrained devices, balancing
accuracy and computational cost [19]. Singh et al. investigated
cross-lingual handwritten text recognition, leveraging shared
features across scripts [20]. Recent studies have explored
transformer variants [21], hybrid CNN-Transformer models
[22], and advanced preprocessing with deep learning [23],

reflecting ongoing innovation in the field.

III. REVIEW OF VARIOUS OCR MODELS

A. Overview of OCR

Optical Character Recognition (OCR) involves converting
scanned documents, images, or digital files into editable and
searchable text. This technology is essential for digitizing
printed materials and extracting data from handwritten sources,
such as historical manuscripts and forms [1]. Handwritten
text recognition, however, is more challenging due to vari-
ability in stroke, style, and size compared to standardized
printed text [2]. This section examines three leading OCR
systems—EasyOCR, Tesseract OCR, and TrOCR—and their
approaches to recognizing handwritten text.

B. EasyOCR

EasyOCR, an open-source OCR library developed by Jaided
AI, employs deep learning to recognize text across multiple
languages, including handwritten scripts [3]. Its architecture
integrates CNNs for feature extraction and RNNs for sequen-
tial text processing [17]. The recognition process begins with
preprocessing, using techniques like grayscale conversion and
noise reduction to enhance text clarity [7]. A CNN-based text
detection module, inspired by models like CRAFT, identifies
text regions as bounding boxes [2]. An RNN with an attention
mechanism then predicts characters sequentially, excelling at
interpreting cursive or connected handwriting [14]. EasyOCR’s
strengths include its speed, multilingual support, and adapt-
ability to noisy environments [18], though its performance may
decline with highly irregular handwriting or limited training
data [13].

C. Tesseract OCR

Tesseract OCR, originally developed by Hewlett-Packard
and now maintained by Google, is a widely used open-source
engine supporting over 100 languages [4]. Modern versions
incorporate LSTM networks, enhancing its ability to process
both printed and handwritten text [13]. Tesseract’s workflow
starts with preprocessing steps like binarization and skew
correction to improve image quality [7]. It then employs
connected component analysis to detect lines and words,
followed by LSTM-based character recognition [12]. Post-
processing, such as dictionary matching, refines the output by
correcting common errors [4]. While optimized for printed
text, Tesseract can handle handwritten text when fine-tuned
with custom datasets [16], though it struggles with complex
styles without extensive preprocessing [11].

D. TrOCR (Transformer-based OCR)

TrOCR leverages the Transformer architecture to provide
an end-to-end solution for text recognition [5]. It begins by
extracting image features using a CNN or vision Transformer,
which are processed by a Transformer encoder to capture
spatial relationships [21]. A decoder generates text sequen-
tially, benefiting from the model’s ability to handle long-
range dependencies [5]. Pre-trained on large datasets, TrOCR
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excels at recognizing diverse handwriting styles, including
cursive text [20], though it requires significant computational
resources and may falter with extremely noisy images [9]. Its
unified approach eliminates the need for extensive preprocess-
ing, distinguishing it from traditional OCR systems [6].

IV. METHODOLOGIES

This study evaluates EasyOCR, Tesseract OCR, and TrOCR
using the IAM Handwriting Database, which offers a diverse
collection of English handwritten samples [8]. Preprocessing
techniques, including binarization, noise reduction via Gaus-
sian blurring, skew correction using the Hough Transform, and
contrast enhancement, were applied to normalize the dataset
and improve recognition consistency [7]. These steps align
with methodologies proposed in prior work to enhance OCR
performance [23].

V. EXPERIMENTAL RESULTS AND COMPARATIVE
ANALYSIS

The performance of EasyOCR, Tesseract OCR, and TrOCR
was assessed based on accuracy, processing time, noise ro-
bustness, and adaptability to handwriting variability. EasyOCR
achieved the highest accuracy at 92.8%, followed by TrOCR
at 88.7%, and Tesseract at 78.9% [1]. Processing speed results
showed EasyOCR as the fastest at 120 milliseconds per image,
compared to TrOCR’s 180 milliseconds and Tesseract’s 220
milliseconds [3]. TrOCR demonstrated superior noise robust-
ness and adaptability to diverse handwriting styles, benefiting
from its Transformer architecture [5], while Tesseract strug-
gled with cursive text and noisy backgrounds [4]. EasyOCR
balanced speed and accuracy effectively, making it suitable
for real-time applications [17]. These findings align with prior
studies on deep learning-based OCR systems [13] and hybrid
models [12].

A. Comparative Analysis Table

The table below summarizes their performance:

TABLE I
COMPARISON OF OCR MODELS FOR HANDWRITTEN TEXT RECOGNITION

Metric EasyOCR Tesseract TrOCR
Accuracy (%) 92.8% 78.9% 88.7%

Processing Speed (ms) 120 ms 220 ms 180 ms
Noise Robustness Moderate Low High

Handwriting Variability High Moderate High

VI. CONCLUSION

This comparative study highlights the distinct capabilities
of EasyOCR, Tesseract OCR, and TrOCR in handwritten text
recognition. EasyOCR offers high accuracy and fast process-
ing, making it ideal for real-time scenarios [3]. TrOCR excels
in robustness and handling variability due to its Transformer
architecture [5], while Tesseract, though effective for printed
text, requires enhancements for handwritten recognition [4].
Current methods face limitations—EasyOCR’s reliance on

diverse training data [13], Tesseract’s struggles with unstruc-
tured handwriting [11], and TrOCR’s computational demands
[9]—indicating areas for future improvement.

VII. FUTURE DIRECTIONS

While EasyOCR, Tesseract OCR, and TrOCR demonstrate
significant advancements in handwritten text recognition, sev-
eral avenues exist for further development. One promising
direction is the integration of hybrid architectures that combine
the strengths of CNNs, RNNs, and Transformers, poten-
tially surpassing EasyOCR’s 92.8% accuracy by leveraging
TrOCR’s contextual understanding [22]. For instance, incorpo-
rating self-attention mechanisms into Tesseract’s LSTM frame-
work could enhance its adaptability to cursive and irregular
handwriting, narrowing the gap with its counterparts [21].

Preprocessing remains a critical area for improvement. Cur-
rent techniques like binarization and skew correction [7] could
be augmented with adaptive methods tailored to specific image
degradations, such as noise or fading, using deep learning ap-
proaches [23]. Generative Adversarial Networks (GANs) offer
another opportunity, generating synthetic handwritten samples
or enhancing low-quality images to address data scarcity and
boost all systems’ performance, particularly Tesseract’s 78.9%
accuracy [15].

Optimizing computational efficiency is also key. TrOCR’s
Transformer design excels at 88.7% accuracy but lags at 180
milliseconds per image due to its resource demands [9]. Tech-
niques like model distillation or lightweight CNN architectures
could align its speed with EasyOCR’s 120 milliseconds while
maintaining robustness [19]. Additionally, integrating multi-
task learning frameworks could streamline text detection and
recognition, enhancing real-time applicability across all sys-
tems [17].

Expanding training datasets is essential for generaliza-
tion. Incorporating diverse, multi-script handwritten sam-
ples—spanning various cultures and languages—could im-
prove recognition across scripts, building on Patel et al.’s
multi-script framework [14]. Collaborative efforts to create
open-access datasets, potentially using federated learning,
could accelerate progress [20]. Furthermore, transfer learning
techniques could adapt pre-trained models to niche handwrit-
ing styles with minimal data, enhancing Tesseract’s customiz-
ability [16].

Finally, addressing noise robustness in challenging environ-
ments, such as historical or mobile-captured documents, could
involve attention-based denoising methods, pushing TrOCR
and EasyOCR beyond their current capabilities [18]. These
advancements could broaden OCR applications, from preserv-
ing historical artifacts to enabling seamless digital note-taking,
ensuring handwritten text recognition keeps pace with modern
needs.
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