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ABSTRACT 

Agricultural crop monitoring plays a crucial role in ensuring food quality and sustainable development, yet 
traditional field surveys are labor-intensive, time-consuming, and often error-prone. These limitations hinder 
timely detection of crop stress over large areas. In contrast, satellite-based hyperspectral imagery (capturing 
hundreds of contiguous spectral bands) offers broad coverage and rich spectral detail, revealing subtle 
indicators of vegetation health across expansive regions. We propose a novel two-phase methodology 
combining statistical computer vision techniques with deep learning to improve crop monitoring accuracy and 
efficiency. In Phase 1, hyperspectral images preprocessed with ENVI software (radiometric calibration and 
atmospheric correction) undergo histogram analysis and red channel intensity distribution evaluation. The red 
band (corresponding to near-infrared in false-color composites) is especially indicative of vegetation vitality, 
as stressed crops exhibit diminished reflectance in this range. Binning red channel intensities into discrete 
ranges enabled clear differentiation between healthy and unhealthy vegetation. Phase 2 employs a YOLOv11 
deep learning model for crop classification. The model was trained on labeled hyperspectral images from 
multiple Indian states (including Punjab and Gujarat) encompassing major crops such as wheat, rice, and 
cotton. It achieved ~82% classification accuracy in distinguishing crop types. Integrating these complementary 
approaches leverages both spectral feature insights and data-driven modeling, enabling accurate crop-type 
mapping alongside early detection of crop stress. The results demonstrate that this efficient and scalable 
satellite-driven framework can reliably assess crop condition and species, providing a valuable tool for 
precision agriculture. In real-world applications, it supports sustainable crop management and informs decision 
support systems for optimized agricultural practices. 

Keywords: Satellite Image Processing; Hyperspectral Imaging; Vegetation Analysis; YOLO Classification; 
Histogram Analysis 

I. INTRODUCTION 

Traditional methods of crop assessment, such as manual surveys and field inspections, are time-consuming, 
limited in scope, and often prone to human error. With the evolution of geospatial technologies [1], satellite 
image processing has emerged as a powerful tool for monitoring agricultural conditions over large areas with 
high temporal and spatial accuracy. This study explores the use of hyperspectral imagery [2] to extract 
meaningful information about crop health and classify vegetation types. Multispectral imagery captures data 
in a few distinct spectral bands (usually 3 to 12); whereas Hyperspectral imagery captures hundreds of narrow, 
contiguous bands (often 100–300+). It provides a continuous spectrum for each pixel (Figure 1). 
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Figure 1: Visual representation of different spectral bands 

The methodology includes image preprocessing, histogram-based analysis of red channel intensity 
distributions, and evaluation of color contributions to detect patterns associated with vegetation to measure the 
healthiness of crops in an area. By integrating traditional statistical analysis with modern deep learning 
techniques, this research demonstrates an efficient approach to crop monitoring and prediction. The framework 
is adaptable and scalable, offering practical utility for precision agriculture and decision support systems in 
real-world agricultural applications. 
Also, further we classify the crop in an area with YOLOv11 to identify which crop is yield in the area; it is 
very much crucial to identify is any agriculture area yielding sustainable crops or not. In real application, by 
analyse the healthiness of crops in an agriculture area and which crops is yielding in that area, we can identify 
the agricultural outcome of that area/land – for example, if the crops status is detected as healthy and the area 
yielding sustainable crops (Cotton) means here the producer will see good outcomes, but let say in an area the 
crop health is detected as not good and/or yielding a crop (Sugarcane) which is not suitable for the region 
means here the producer have to face major losses. 
This study explores a structured approach that integrates image pre-image processing and image analysis to 
enhance the reliability of satellite-based crop health monitor. In the pre-image processing stage, raw satellite 
data undergoes conversion, atmospheric correction, and radiometric calibration using ENVI to ensure 
uniformity and minimize noise. These steps are crucial for preparing the hyperspectral and multispectral 
images for further analysis. 
Following this, image analysis phase involves analytical tasks such as histogram generation, red color channel 
contribution analysis, and extraction of statistical features. These features provide meaningful insights into 
vegetation variability and healthiness. The processed images also then classified using a deep learning-based 
YOLOv11 model, to distinguish between crop types with high accuracy. 

1.1. Raw Satellite Image 

Raw satellite images are the original data files captured by hyperspectral sensors onboard satellites, such as 
those from NASA's EO-1 Hyperion mission [3]. These images contain hundreds of spectral bands and are 
typically stored in file formats like .hdr, .dat, or .img. They are not directly viewable without specialized 
software, and they preserve the complete spectral information required for accurate analysis. The below is an 
example of raw image proceed with ENVI for visualization. 

 
Figure 2: A raw satellite image 
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1.2. False Color Image 

After obtaining the raw data, the images were processed using ENVI (Environment for Visualizing Images) 
software to convert the spectral data into a false-color visual format. This step allows us to visually inspect 
various land features, vegetation, and soil conditions by mapping non-visible spectral bands into the red, green, 
and blue channels. These false-color images serve as an intermediate step before applying statistical analysis 
and classification techniques. 
A false color image [4] is an image that represents data using colors that do not correspond to the true (natural) 
colors of the scene as perceived by the human eye. Instead, artificial or "false" colors are assigned to various 
features to highlight specific characteristics that are otherwise invisible or difficult to distinguish. In false color 
image, the red brand represents near infrared brand. In false color images, especially in remote sensing (e.g., 
satellite imagery), vegetation health can be measured using the red (near-infrared) bands, because vegetable 
strongly reflect near-infrared wavelength. Healthy vegetables reflect more infrared compare to sick vegetables. 
So, in false color image, healthy vegetables appear brighter (red). This is fundamental concept that we have 
utilize in this research. Therefore, we have focus on only Red channel to analyze the crops health. 

 
Figure 3: A false color image processed from raw satellite image 

II. LITERATURE REVIEW 

In recent years, satellite-based image processing has emerged as a crucial tool in agricultural research and 
monitoring. The increasing availability of high-resolution multispectral and hyperspectral satellite data has 
enabled researchers to analyze crop conditions, monitor vegetation growth, assess stress levels, and predict 
yield with greater accuracy. 
Hyperspectral imaging, in particular, has shown immense potential due to its ability to capture data across 
hundreds of narrow spectral bands. These images provide detailed spectral signatures that can be used to 
differentiate between healthy and unhealthy crops, classify different vegetation types, and detect subtle 
changes in plant physiology. Many researchers have focused on applying statistical models and machine 
learning algorithms to this spectral data for classification and prediction tasks. 
To gain a deeper understanding of the current trends and advancements in satellite image processing for 
agricultural applications, several research studies were reviewed. These studies focus on hyperspectral 
imaging, vegetation analysis, crop health monitoring, and predictive modeling, providing a strong foundation 
for our work. 

i. A study [1] on peanut quality assessment demonstrated the effectiveness of hyperspectral imaging 
combined with deep learning models like 3D-CNN and 2D-CNN, achieving over 98% classification 
accuracy. The use of band selection and data augmentation improved model stability and reduced 
overfitting. Key spectral features were identified in the 700–850 nm range for precise defect detection. 
The Snapshot system outperformed traditional push-broom methods in accuracy and processing speed.  

ii. According to [2] recent research explored deep learning-based hyperspectral image reconstruction 
from RGB images to overcome the high cost and complexity of traditional HSI systems. Algorithms 
like HRNET, HSCNN-D, and MST++ were applied to assess sweet potato quality, with HRNET 
achieving the best performance metrics. Genetic algorithms and explainable AI were used for feature 
selection and interpretation.  

iii. A study [3] proposed an unsupervised segmentation method for per-field analysis in hyperspectral 
images, addressing the limitations of manual digitization. By combining spectral similarity with edge 
detection and watershed segmentation, the method effectively identified spatially homogeneous land 
segments. Sparse unmixing and dictionary learning were used to compute fractional abundances of 
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vegetation, soil, and residues. Results showed improved segmentation accuracy using fractional-
spectral-similarity and Sobel edge filtering.  

iv.  This study [4] utilized hyperspectral imaging (HSI) combined with deep learning models to identify 
hybrid okra seeds across 18 varieties. Spectral data within the 948.17–1649.20 nm range were analyzed 
using PCA and LDA for clustering and feature analysis. Among various models, CNN achieved the 
highest accuracy and robustness, maintaining stable performance despite increasing variety 
complexity.  

v. This study [5] presents a hyperspectral imaging (HSI) and deep learning-based approach to identify 
the infection degree of Fusarium Head Blight (FHB) in wheat kernels. Reflectance spectra were 
analyzed, and five effective wavelengths were selected using the Random Frog algorithm. The 
Residual Attention CNN (RACNN) achieved high accuracy using only two key wavelengths (940 nm 
and 678 nm), demonstrating over 98% classification performance.  

vi. This research [6] highlights the use of hyperspectral imaging (HSI) as a non-destructive method for 
assessing food quality, emphasizing its combination with machine learning techniques. It outlines the 
advantages and limitations of various algorithms, showing that deep learning offers promising 
accuracy and real-time application potential. Feature selection is noted as crucial for reducing 
computation and improving efficiency.  

vii. In this study [7] over the past two decades, hyperspectral imaging (HSI) has gained recognition as a 
powerful non-destructive tool for assessing the quality and safety of horticultural products. By 
integrating machine vision and spectroscopy, HSI enables precise defect detection, contamination 
mapping, and internal quality evaluation. This review outlines various imaging modes and discusses 
data analysis techniques from preprocessing to model building. 

viii. This study [8] explores the evolving role of remote sensing technologies in modern agriculture, 
particularly within the framework of Industry 5.0 (I5.0). By highlighting the collaboration between 
humans and intelligent machines, the paper underscores enhanced decision-making, sustainability, and 
resilience in agricultural practices. It reviews various remote sensing applications and their integration 
with I5.0 principles.  

ix. This Study [9] focuses on estimating crop acreage using detailed land use data and GIS spatial 
technology. It accounts for natural land distribution, crop planting direction, and survey costs to define 
standard land areas. Irregular land blocks are combined and split into similarly sized standard blocks.  

x. In this paper [10] digital plant phenotyping uses advanced non-destructive techniques, like 
hyperspectral imaging (HSI), to extract structural and physiological traits from plants. HSI offers a 
unique advantage by capturing both types of information simultaneously. While HSI has been 
successfully applied to parts like leaves,                                                                                                                              
applying it to whole plants poses challenges due to variations in illumination caused by plant geometry 
and light scattering.  

xi. This study [11] explores the use of hyperspectral imaging to predict internal quality traits—firmness 
and soluble solids content (SSC)—in Pink Lady apples at different harvest stages. Reflectance data 
from 300 spectral bands (386–1028 nm) were collected and analyzed using five regression models: 
ANN, KNN, DT, PLSR, and MLR. The best firmness prediction was achieved using ANN (R² = 
0.910), while DT and MLR performed better for SSC. 

xii. According to this paper [12] despite the availability of advanced agricultural technologies, many are 
underutilized due to their limited design scope. However, hyperspectral remote sensing is increasingly 
adopted for its cost-effectiveness and ability to provide detailed data. This study proposes a practical 
hyperspectral imaging model using varied spectral band configurations and introduces a bio-inspired 
Fly Optimization Algorithm (FOA) for image acquisition.  

xiii. According to this paper [13] deep convolutional neural networks (CNNs) are highly effective for 
hyperspectral image (HSI) classification but face challenges like overfitting and loss of spatial-spectral 
correlation with increasing depth. This paper proposes an enhanced CNN (e-CNN) that merges 
successive layer outputs and combines spectral features across four spatial stages for improved feature 
extraction. A 1×1 convolution is used to integrate hybrid features, and the AdaBound optimizer 
enhances generalization with limited training data.  
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xiv. This study [14] investigates the sensitivity of heavy metal prediction (Ni, Zn, Pb) to spectral resolution 
variations in soil spectra and explores spatial distribution mapping. Using 92 soil samples and airborne 
HyMap hyperspectral data from Gansu, China, the study compares prediction accuracies across real 
field spectra and simulated satellite spectra (AHSIGF-5, Hyperion, AHSIZY-1 02D).  

xv. This study [15] presents a segmentation-aided methodology for spectral-spatial classification of 
hyperspectral images. The approach addresses spectral variability, the curse of dimensionality, and 
spatial dependencies by incorporating local spatial regularization. A contiguity-based segmentation 
algorithm is used to create object-wise textures, which enhance classifier learning. 

III. RESEARCH METHODOLOGY 

The proposed model integrates Statistical Computer Vision and Deep Learning-based Classification to analyze 
satellite imagery for agricultural outcomes. It uses pixel-level statistical features to understand image 
properties and also leverages a YOLOv11n deep learning classifier to recognize the vegetation. 
This hybrid model is divided into two phases: 
i. Statistical Computer Vision Phase – analyzes raw image data using histograms, intensity distributions, and 
pixel-level statistics. 
ii. YOLO-based Classification Phase – classifies vegetation types from satellite images using a pretrained 
neural network. 

 
Figure 4: Flowchart of the proposed methodology 

3.1. Phase 1: Statistical Computer Vision 

Statistical computer vision refers to techniques that use statistical properties of pixels and pixel groups to 
extract meaningful features from images without learning-based models. In this project, we apply these 
techniques to study brightness, color dominance, and intensity distributions, which are highly relevant in 
vegetation analysis. 

3.1.1. Collection of Dataset 

The initial and crucial step of this research involves collecting high-resolution hyperspectral satellite images 
to serve as the foundation for vegetation analysis using Statistical Computer Vision techniques. The images 
were sourced from the Earth Explorer portal of the United States Geological Survey (USGS), specifically from 
the Hyperion sensor onboard the EO-1 satellite. This sensor captures data across 242 spectral bands, covering 
the Visible (VIS), Near-Infrared (NIR), and Short-Wave Infrared (SWIR) regions within a spectral range of 
0.4 µm to 2.5 µm. Such dense spectral coverage allows for fine-grained detection of vegetation traits such as 
chlorophyll content, water stress, and biomass variation. We selected major agricultural regions in India based 
on crop density and climatic diversity, including the states of Gujarat, Uttar Pradesh, West Bengal, Bihar, 
Jharkhand, Punjab, and Uttarakhand. For each region, multiple hyperspectral scenes were collected—each 

Data Collection 

Image Preprocessing 

Histogram Generation 

Histogram Analysis 

Flow Chart of Phase 1 

Data Collection 

Model Training (YOLO) 

Model Validation 

Classification and Results 
 

Flow Chart of Phase 2 
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comprising 6 to 10 image layers depending on the capture specifics. The datasets were stored in region-wise 
directories for streamlined processing and reproducibility. 

3.1.2. Pre-processing 

Hyperspectral imaging (HSI) captures reflectance information across hundreds of narrow and contiguous 
spectral bands, providing detailed spectral signatures for each pixel in a scene. While this spectral richness is 
invaluable for tasks such as material identification, vegetation health monitoring, and mineral mapping, 
hyperspectral data is inherently high-dimensional and not visually interpretable in its raw form. False color 
imaging serves as a dimensionality reduction and visualization technique, enabling researchers to explore and 
analyze HSI data in a human-interpretable RGB format. 
In the pre-processing, at first raw sensor images are converted to radiance or reflectance using ENVI’s 
Radiometric Calibration tool for radiometric correction. Then, use tools like FLAASH within ENVI for surface 
reflectance derivation (atmospheric correction). And finally, band selection is performed to generate the False 
Color image. 

3.1.3. RGB Histogram Generation 

Histograms provide a non-parametric estimate of the probability distribution of pixel intensities. 

��(�) = �  

�

���

�  

�

���

�(��(�, �) = �) 

Where, 

��(�): Histogram count at intensity � for channel � 
δ: Indicator function (1 if intensity matches �, else 0) 
This helps in understanding how intensity values are distributed, which can indicate plant health, shadow 
presence, or image brightness variations. 

3.1.4. Histogram Analysis: 

i. Channel-Wise Contribution Analysis 
We calculate the percentage contribution of each color channel (Red, Green, Blue) to understand which spectral 
component dominates. 

 Contribution � =
∑��(�, �)

∑(�� + �� + ��)
× 100 

This helps us determine the dominant spectral band, which is important in agriculture: in false color image, 
higher contribution of red channel means the captured area has larger agriculture land, means this area could 
contribute largely in agriculture outcome.  

ii. Red Channel Intensity Binning (Statistical Segmentation) 
To analyze red channel variations, pixel intensities are grouped into discrete bins: 
 

We then compute:                                  

Bin� = [� ∈ (��, ��)], � = 1,2, … ,5

 

�bin � =
 Number of pixels in Bin �

 Total pixels 
× 100

 

 

This helps to understand the healthiness of the vegetation. Bins dominated in higher intensity groups indicates 
good quality of the crop. 

3.2. Phase 2: Deep Learning-Based Classification (YOLOv11n) 

we also perform classification using a deep learning based YOLO model. YOLOv11 is a light-weight, efficient 
convolutional neural network (CNN) designed for classification tasks. It learns spatial patterns and classifies 
images into specific vegetation classes. 
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3.2.1. Data Collection 

Also to classify the crops a large dataset of various hyperspectral images of labelled crops (including Wheat, 
Sugarcane, Cotton, soyabean, Rice) is collected from various sources. This dataset is splited into 3:1 ratio for 
training and testing. 
This robust dataset serves as the backbone for evaluating vegetation status and projecting crop outcomes across 
diverse geographical zones. By integrating hyperspectral imagery with labelled training data, we created a rich 
multidimensional dataset suitable for advanced feature extraction, classification, and predictive modelling. 

Training Process 

ℒ�� = − �  

�

���

�� ⋅ log (���) 

Cross-entropy loss is used to optimize predictions. 

Softmax for Prediction 

��� =
���

∑  �
��� ���

 

The class with the highest probability is selected as output. 

4. EXPERIMENT AND RESULTS 

In this section, we present a comprehensive analysis of the experimental outcomes derived from applying the 
proposed methodology to hyperspectral satellite images collected for multiple Indian states, including Gujarat, 
Uttar Pradesh, West Bengal, Bihar, Jharkhand, Punjab, and Uttarakhand. The experiments were designed to 
evaluate the capability of the model in accurately assessing crop health and predicting future growth trends 
using spectral data derived from Hyperion sensors. 

i. Original Histogram 
A false  color image was loaded and slightly darkened using a brightness factor of 0.6 to analyze pixel intensity 
behavior under reduced illumination. The image was then split into its three primary color channels: Red, 
Green, and Blue. For each channel, a histogram was computed that represents the frequency of pixel intensities 
ranging from 0 (black) to 255 (maximum intensity) shown in Fig 5. 

 
Figure 5: Histogram Representing of a Hyperspectral Satellite Image (loaded False Color Image) 

 Each color channel shows a unique intensity distribution pattern. 

 Peaks indicate the most frequent intensity levels per channel. 

 Comparison highlights informative wavelength ranges. 

 Lower intensities suggest shadow or low-light areas. 
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ii. Color Channel Contribution Analysis 
This experiment aimed to analyze the relative contribution of each color channel (Blue, Green, Red) in the 
satellite image. The process involved computing the total sum of pixel intensities for each channel after 
applying a brightness factor of 0.6 to uniformly reduce overall brightness without distorting color relationships. 
Hence, we find out the channel wise contribution of the original histogram. 

 
Figure 6: Color Channel Contribution of Histogram 

In the obtained channel-wise histogram the Red channel contributed most (⁓60%), that is the taken image 
contains agriculture land largely. 

iii. Red Channel Intensity Distribution Analysis 
This part of the histogram analysis focuses specifically on understanding how the intensity levels in the Red 
channel are distributed across the image. This is crucial in agricultural satellite image analysis, as vegetation 
stress and crop health often manifest as changes in red reflectance. 

 
Figure 7: Red Channel Intensity Distribution Analysis of the Histogram 

 Bin 1 (0-50) intensity range is very high: Means crops health is very poor, the agriculture land yielding 
sicked crops. The outcome of the agriculture land is very poor. 

 Bin 2 (51-100) intensity range high: Means the is crop health is not so good. 

 Bin 3 (101-150) intensity range high: Means the crop health is moderate, the outcome of the agriculture 
land is moderate. 

 Bin 4 (151-200) intensity range high: Means the is crop is healthy and the area is entirely agricultural. 

 Bin 5 (151-200) intensity range high: Means the is crop is very healthy and fine. The outcome of the 
agriculture land is dramatic. 
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For the sample image (that we have selected to demonstrate), intensity of bin-4 is high, that is crops health is 
good in the land. Since, the sample image contains large agriculture land and healthy crops the outcome of this 
land could be high. 

CLASSIFICATION SECTION  

i. Classification Training Using YOLOv11 
The YOLOv11 model was trained using labeled satellite images of crops to accurately classify vegetation 
types. The images were resized to 256x256 and fed into the model to learn spatial and spectral patterns. 
Through iterative optimization of loss functions and confidence scoring, the model achieved efficient and high-
accuracy classification. 

ii. Model Validation Using YOLOv11 
The YOLOv11 model was validated using a separate set of hyperspectral images not seen during training to 
assess its generalization capability. Performance was evaluated using metrics like accuracy, confusion matrix, 
and confidence scores. The classification model archived 82% accuracy in validation. This validation ensured 
the model’s robustness in real-world agricultural prediction tasks. 
The confusion matrix of the classification result (obtained in validation) is shown below: 

 
Figure 8: Confusion Matrix for Classification Results 

The classification report is show below 

 
The histogram analysis revealed red channel dominance indicating vegetation traits, while YOLOv11 
classification showed high-confidence, fast, and accurate crop-type predictions. Together, these validate the 
strength of combining statistical and deep learning methods for satellite-based agricultural analysis. 
 
 

Journal Of Technology || Issn No:1012-3407 || Vol 15 Issue 6

PAGE NO: 26



V. CONCLUSION 

This study demonstrates that combining satellite-based hyperspectral imagery with statistical computer vision 
techniques and deep learning yields an effective framework for crop monitoring. By preprocessing raw 
Hyperion satellite data in ENVI (including radiometric calibration and atmospheric correction) to ensure 
spectral quality, we obtained reliable false-color composites for analysis. Focusing on the red channel of these 
images proved particularly insightful – healthy vegetation showed stronger near-infrared reflectance 
(appearing brighter red) compared to stressed crops, validating red-band intensity as a robust indicator of crop 
health. Leveraging these spectral insights, our YOLOv11-based classifier distinguished crop types with high 
accuracy; the model achieved about 82% classification accuracy on the validation set. These results confirm 
that integrating statistical histogram analysis with a state-of-the-art deep learning model can effectively assess 
crop health and classify crop types from hyperspectral data. These findings carry significant implications for 
precision agriculture. The developed satellite monitoring approach enables scalable, non-invasive crop health 
assessment over large areas, which is especially beneficial for agrarian regions like India. By automatically 
evaluating vegetation condition and crop type from spectral imagery, the system supports data-driven decision-
making for sustainable crop management across diverse agricultural zones. In our experiments, the method 
was successfully applied to satellite data from multiple states in India (e.g. Gujarat, Uttar Pradesh, West 
Bengal, Punjab), underscoring its applicability to varied geographic and climatic contexts. This capability can 
help farmers and policymakers optimize resource allocation and intervention timing, aligning with the growing 
use of remote sensing to monitor crops, assess stress, and improve yield predictions. In essence, the proposed 
framework can enhance precision farming by providing timely insights into crop conditions at regional and 
national scales. Despite its promise, the approach has certain limitations. It is dependent on high-quality 
hyperspectral imagery, which can be costly and limited in coverage – specialized satellite sensors (such as 
NASA’s Hyperion) are required to capture the rich spectral data. The reliability of the model under different 
atmospheric conditions or across seasons remains to be fully assessed; unmodeled atmospheric effects or 
seasonal shifts in crop spectra could impact accuracy. Additionally, the current training dataset encompasses a 
limited range of crop varieties, which may constrain the model’s generalizability to other crop types or regions 
not represented in the training data. These factors highlight the need for cautious interpretation of the results 
and targeted improvements going forward. 
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