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Abstract- Worldwide, cardiovascular diseases (CVDs) 

continue to be the primary cause of mortality. The World 

Health Organization estimates that 17.9 million deaths 

worldwide in 2019 were related to CVDs, accounting for 

32% of all fatalities. Effective clinical therapy requires 

early detection of CVDs, and deep learning algorithms can 

help with this by assisting in the diagnosis process. Thus, 

from retinal images, a deep learning model for the 

prediction of CVDs is created using CNNs (i.e., 

Convolutional Neural Networks) and MobileNet 

architecture. CNNs automatically extract pertinent 

information from retinal images, while the model's 

lightweight MobileNet design allows for efficient 

deployment. Pre-processing techniques are used to increase 

the quality and diversity of the data used in the model's 

training and evaluation on a large dataset that includes both 

healthy persons and CVD patients. Based on MobileNet, 

CNN's architecture includes extra layers designed 

specifically for CVD prediction. The model successfully 

classifies retinal images as suggestive of the presence or 

absence of CVD after extensive training and fine-tuning. 

Error and other standard measures are used in performance 

evaluation, showing encouraging outcomes for the 

economical and early identification of CVDs. Clinical 

value and influence on patient care must be evaluated in 

conjunction with integration into clinical settings and 

additional validation. 

Keywords: Cardiovascular Diseases (CVDs), deep 

learning algorithms, CNNs (i.e., Convolutional Neural 

Networks), MobileNet, and retinal images. 

I. INTRODUCTION 

Worldwide, CVDs (i.e., cardiovascular diseases) 

continue to be the primary cause of death, which drives up 

the expenses of the healthcare sector in numerous nations 

[1] [2]. The World Health Organization (WHO) [3] reports 

that cardiovascular diseases (CVDs) have caused 32% of all 

deaths worldwide, with low- and middle-income nations 

accounting for two-thirds of these cases. Additionally, of all 

NCD (i.e., non-communicable diseases)-related premature 

deaths in adults under the age of 70, 38% are attributable to 

CVD [4]. 

Over the past 20 years, AI (i.e., Artificial Intelligence) 

systems have become more and more important in medical 

research imaging. Between 2007 and 2008, there were 

around 100–150 articles on AI related to diagnostic imaging 

alone; by 2017–2018, that number had risen to 1000–1100 

[5]. Thanks to recent advancements in computer systems, 

deep learning (DL), a subfield of artificial intelligence, is 

now a viable tool for analyzing complicated data sources, 

namely medical images. Impressive results have been 

obtained with deep learning in a variety of applications, 

including the prediction of COVID-19 [6], segmentation of 

brain lesions [7], classification of skin lesions [8], and 

classification of mammography masses [9]. 

Concerning medical image processing, [10] provides a 

thorough overview of the primary architectures, methods, 

and uses of deep learning. Since retinal photographic 

analysis is noninvasive and inexpensive, it has become 

more and more common among medical imaging 

techniques [11]. Using a monocular camera, the fundus 

which is the back portion of the eye is projected onto a two-

dimensional plane to create RFI (i.e., Retinal Fundus 

Images). 

 An RFI may be used to identify many biomarkers and 

structures within the eye. These biomarkers are crucial in 

the identification of retinal disorders and abnormalities, 

including DR (i.e., Diabetic Retinopathy), degeneration 

of macular edema, and glaucoma. The scientific community 

has shown a considerable deal of interest in deep learning 

applications in oculomics in recent years. Researchers in 

the field are becoming more and more interested in studies 

on the discovery and prediction of ocular biomarkers of 

systemic disorders [12]. Renal impairment [13], traumatic 

brain injury [14], cardiovascular disease [15], 

musculoskeletal diseases [16], anemia detection [17], 

Alzheimer's disease [18], and other complex disorders are 
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better understood thanks to deep learning techniques that 

use retinal morphology analysis to provide insights about 

eye-body associations. 

The research paper [19] states that in 2015, ischemic 

heart disease and stroke alone caused 15.2 million 

fatalities or 85.1% of all deaths caused by cardiovascular 

events. When risk factors are addressed, most 

cardiovascular illnesses may be avoided. These include 

metabolic issues like glucose and cholesterol levels as well 

as individual ones like BMI (i.e., body mass index), blood 

pressure, gender, age, and smoking status [20]. 

A. Problem Statement 

The primary cause of death globally is cardiovascular 

illnesses. For successful management and better patient 

outcomes, early diagnosis is essential. It can be expensive, 

time-consuming, and intrusive to use traditional diagnostic 

procedures. Assessment of CVD risk may be done non-

invasively using retinal scans, which show the vascular 

health state of the body. Early detection and preventative 

treatment tactics might be revolutionized by using deep 

learning algorithms to scan retinal images and potentially 

deliver quick, accurate, and affordable forecasts of CVD 

risk. Using cutting-edge AI methods, this strategy aims to 

manage CVD proactively. 

II. LITERATURE SURVEY 

[21] attempted to diagnose CVD with a unique 

technique involving details from data corresponding to 

dual-energy X-ray absorptiometry and retina pictures. They 

evaluated a grown-up Qatari sample of five hundred 

individuals from a Qatar-based database, comprising the 

same percentages in the CVD and dominance categories. 

They conducted case-dominance research using a unique 

multifaceted approach (blending information gathered from 

databases) to put forward a deep learning-oriented strategy 

for distinguishing the CVD category from the dominance 

category. 

[22] verified Reti-CVD, a biological indicator, for 

identifying risk groups of greater than or equal to ten per 

cent in ten-year risk factors for CVD and increase 

assessment of risk in persons using QRISK3 (risk 

evaluation tool) of seven and a half per cent up to ten per 

cent via the Biobank based out of the United Kingdom. The 

ratings of the considered biological indicator were 

generated and divided into 3 risk categories using the 

optimal thresholds of Biobank based out of the United 

Kingdom for risk assessment. The potential of the 

considered biological indicator was assessed by using Cox 

proportional-risks frameworks in forecasting CVD 

occurrences in people of all ages. 

The goal of [23] was to see if deep learning on pictures 

of the retina from a diabetic retinopathy examination 

initiative improved the forecasting of cardiovascular 

events. The frameworks built based on deep learning were 

taught to forecast prospective risk factors for CVD and 

hazards simultaneously, and a deep learning-based rating 

was generated. Poisson regression frameworks 

incorporating and excluding a deep learning-based rating 

were applied to investigate populations comprising 2,072 

CVD incidents (type 1 diabetes) and 38,730 CVD incidents 

(type 2 diabetes). 

[24] proposed a new Inception version 3 model 

incorporating the VGG16 model to anticipate the levels of 

coronary artery disease using non-invasive and easily 

accessible fundus pictures. This method utilized 

sophisticated image investigation approaches such as 

reduction of noise and improvement of contrast. The fundus 

pictures were used for separating the vessels that carry 

blood and identifying the important characteristics of the 

optical disc of the eye. Within this setting, the Inception 

version 3 framework was first utilized for capturing 

complicated ordered correlations inside the photos. 

[25] performed a backwards-looking analysis 

comprising ultra-widefield colour fundus photography 

pictures from individuals diagnosed with 3 retina vascular 

disorders and individuals who were healthy. The photos 

were deployed to train a multilayered deep Convolutional 

Neural Network (CNN) to distinguish between vascular 

illnesses and individuals who were healthy using ultra-

widefield colour fundus photography. Over two hundred 

ultra-widefield colour fundus photography pictures were 

incorporated, with 55 photos representing healthy 

individuals and 169 photos representing retinal vascular 

disorders. 

Having considered the fact that diabetes was an 

important driver for CVD, [26] sought to investigate using 

frameworks based on deep learning on Retinal Fundus 

Imaging as a means to forecast cardiovascular susceptibility 

in the considered patient population. They utilized the 

Coronary Artery Calcium (CAC) rating as an indicator and 

trained a CNN to forecast if it exceeds an acceptable level 

established by specialists. The earliest studies on a smaller 

sample of medically validated individuals reveal 

encouraging results. 

[27] created an Artificial Intelligence-based 

framework to detect cardiovascular disease based on 

multiple modalities by combining fundus photos obtained 

from Samsung Medical Center (SMC) and medical risk 

factors for construction and intrinsic verification, and 

fundus photos obtained from a Biobank based out of the 

United Kingdom for extrinsic verification. 
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[28] determined if Optical Coherence Tomography 

Angiography and machine learning can forecast the 

existence or lack of coronary artery disease along with its 

related risk variables in individuals. In this study, 

individuals participating had undergone 3 × 3 millimeters, 

6 × 6 millimeters, and 8 × 8 millimeters Optical Coherence 

Tomography Angiography imaging by employing the Carl 

Zeiss CIRRUS HD-OCT structure 5000. Information 

related to the population and concurrent conditions was 

obtained for every individual participating in their study. 

[29] intended to see if retina pictures could be utilized 

to estimate the likelihood of coronary artery disease in 

persons suffering from cardiometabolic conditions. Based 

out of Shenzhen Traditional Chinese Medicine Hospital, 

this work undertook sample-control research by enrolling 

one hundred and twenty-eight controlled patients having 

cardiometabolic diseases and one hundred and eighty-eight 

patients suffering from coronary artery disease. Within 2-

week duration of being admitted, retina pictures were 

acquired. The automated retinal scan investigation 

technique was used to determine the properties of the retina. 

Machine learning algorithms were used to create risk 

prediction models for patients suffering from coronary 

artery disease. For the sensitivity assessment, those with 

coronary artery disease were separated into two groups: 

non-diabetes and diabetes. 

[30] looked at the use of optical coherence tomography 

as an extra diagnostic tool for forecasting prospective 

coronary artery disease. They used a deep learning strategy 

(self-supervised-typed) utilizing Variational Autoencoders 

(VAE) for learning reduced-dimensional depictions of 

raised-dimensional three-dimensional optical coherence 

tomography pictures while also capturing distinguishing 

properties of various retina tiers inside the image of optical 

coherence tomography. To identify patients who were 

susceptible to coronary artery disease (stroke or myocardial 

infarction) and who were not susceptible to coronary artery 

disease (stroke or myocardial infarction), a classification 

technique - random forest was trained to utilize the learnt 

salient characteristics, as well as individual's medical and 

demographic information. Their prediction framework, 

taught on multimodal information, was evaluated for the 

capacity to accurately determine patients who were 

anticipated to have coronary artery disease (stroke or 

myocardial infarction) during the 5 years following the 

capture of images. 

[31] conducted potential research to evaluate the 

effectiveness of automated retina processing of images in 

detecting coronary artery disease in individuals suffering 

from AIDS. They included individuals suffering from 

AIDS having at least one cardiovascular-related concern. 

Everyone who participated underwent computed 

tomography coronary angiography and digitized pictures of 

the fundus. In their investigative study, the main result was 

obtained for coronary atherosclerosis, while the auxiliary 

result was obtained for obstruction-related coronary artery 

disease. 

[32] looked into the relationship between the stiffness 

measure of arterial regions, retina age disparity, and acute 

coronary artery disease. To estimate the age of the retina, a 

framework based on deep learning was built using over 

nineteen thousand fundus pictures of over eleven thousand 

individuals having no illness histories at baseline. For the 

remainder of participating individuals of over thirty-five 

thousand, a retinal age disparity (difference between the 

sequential age and forecasted age of the retina) was 

calculated by them. 

[33] proposed a unique framework based on deep 

learning known as "CardioSightFrame" for predicting 

threats related to cardiac attack and cardiovascular 

disorders in the beginning phases utilizing pictures of the 

retina. This method used both the Vision Transformers 

(ViTs) and Graph Convolutional Networks (GCNs) to 

regulate local architectural data and broader contextual 

insight based on scans of the retina regions. 

[34] assessed the capacity of Reti-CVD, a 

cardiovascular illness retina biological marker (deep 

learning-based), to recognize patients at moderate and 

elevated risk categories for cardiovascular illness. By using 

the altered Framingham Risk Score (FRS), QRISK3 (a 

cardiovascular risk rating), and the Pooled Cohort Equation 

(PCE), moderate and elevated risk populations were 

identified by this work. 

By concentrating on images of the retinal fundus, [35] 

came up with a method named Osprey Gannet optimization 

(OGO) by relying upon transfer learning. The input picture 

detailing the fundus was first permitted into the pre-

processing phase by using a bilateral-typed filter. With 

training powered by OGO and the developed Osprey 

Gannet-active counter framework, the identification of OD 

was done. Their method was formed by combining Gannet 

Optimization (GO) with Osprey Optimization (OO) 

approaches. 

III. PROPOSED CVD PREDICTION 

MODEL 

Two architectures, namely, MobileNet and CNN are 

being utilized for developing our novel model concerned 

with the retinal imaging-based detection of CVD. The 

automatic extraction of important traits from retina pictures 

has been facilitated by CNNs, whereas effective 

implementation has been facilitated by MobileNet owing to 

its lightweight design. Training entails adjusting the 
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parameters of the model to classify pictures of the retina for 

obtaining appropriate insights for indicating CVD. 

 

Figure 1 Block Diagram of the Proposed Method 

In the above figure 1, there are 6 operational stages, 

namely, generation of unique dataset comprising retinal 

images; pre-processing of data; data splitting; training 

stage; testing stage; and classification. These 6 operational 

stages will be briefed below. 

B. Operational Stages 

In this section, we will brief 6 operational stages of our 

model incorporating two architectures, namely, MobileNet 

and CNN. 

1. Generation of unique dataset comprising 

retinal images 

In this stage, we are generating our own unique dataset 

by collecting wide range of retinal images that could 

correspond to the stature of CVD risks in human beings. 

Using this uniquely created dataset, our two architectures, 

namely, MobileNET and CNN are being trained followed 

by testing. 

1. Pre-processing of data 

Pre-processing is a critical step in getting the picture 

data ready for examination. Noise decrement, the 

normalization process, picture enrichment, and scaling may 

all be used to increase the capacity of models to gain 

knowledge using input. 

 

2. Data Splitting 

Once the pre-processing of the dataset has been split 

into two subsets: one set has been deployed for training 

purposes and the other set for performance assessment 

purposes. Data frequently splits into two portions: between 

seventy and eighty per cent for training and twenty per cent 

to thirty per cent for testing. 

3. Training Stage 

During this stage, the model develops skills to 

recognize trends and features in retina pictures, indicating 

CVD. The same has been accomplished by submitting the 

training portion of the photos to 2 deep learning 

architectures. 

4. Testing Stage 

The testing stage entails assessing the way the trained 

model performed on the testing group of pictures. This 

contributes to determining the model's correctness and 

usefulness in recognizing CVD from fresh, unnoticed 

pictures. 

5. Classification 

Following testing, the model is utilized to determine if 

fresh retina pictures indicate whether there is any trace of 

CVD. The classification findings can subsequently be 

utilized to help clinicians with diagnosis and treatment at an 

early stage. 

C. Methods for CVD 

In this section, we will brief 2 of our architectures 

(MobileNet and CNN) used in our model concerned with 

the retinal imaging-based detection of CVD. 

1. MobileNET 

MobileNETs are built on a simplified design that 

employs depth-based isolatable convolutions to generate 

deep neural networks that are lightweight [36]. MobileNET 

can provide better image recognition prospects when 

coupled with other deep learning structure like CNN using 

modest quantum of training data across the restricted 

resources containing ARM-oriented central processing 

units [37]. 

MobileNet is used as the deep learning model's core 

structure for making the retina pictures-based CVD 

prediction. Its lightweight architecture enables excellent 
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picture processing, allowing for quick interpretation on 

platforms having restricted central processing unit 

resources. The model may be used in healthcare 

environments for prompt identification and risk evaluation 

of CVD disorders utilising the efficacy of MobileNet 

architecture. 

2. CNN 

CNNs present cutting-edge designs and are commonly 

employed for picture classification remedies [38]. CNNs 

are built up of neurons which can learn biases as well as 

weights. All neurons take inputs, execute a dot product, and 

alternatively apply by using non-linear dynamics. The 

entire network continues to convey only distinguishable 

scoring functional units from pixels of an unprocessed 

picture on the one side to category ratings on the other side 

[39]. 

The CNN structure functions as the deep learning model's 

foundation, enabling for the automated retrieval of key 

characteristics from CVD-related retina pictures. CNN 

adapts to categorize pictures of the retina as indicative of 

whether there's CVD or not after extensive training and 

adjustments, allowing for prompt diagnosis and evaluation 

of risk factors. 

IV. RESULT AND ANALYSIS 

In this section, we will present the common 

performance measures like accuracy, precision, and recall 

for both MobileNET and CNN architectures in our novel 

model concerned with the retinal imaging-based detection 

of CVD. First, we present the results for MobileNET 

followed by the results for CNN. 

A. MobileNET 

Firstly, we present the performance measures like 

accuracy, precision, and recall for the MobileNET 

architecture. 

In the below figure 2, a comparison graph showing 

training accuracy Vs training loss and validation accuracy 

Vs validation loss for MobileNET architecture has been 

plotted, which reveals that there is less deviation when 

comparing training and validation instances. 

 

Figure 2 Comparison of Accuracy Vs Loss for 

MobileNET architecture 

In the below figure 3, a comparison graph showing 

training precision Vs training loss and validation precision 

Vs validation loss for MobileNET architecture has been 

plotted, which reveals that there is less deviation when 

comparing training and validation instances. 

 

Figure 3 Comparison of Precision Vs Loss for 

MobileNET architecture 

In the below figure 4, a comparison graph showing 

training recall Vs training loss and validation recall Vs 

validation loss for MobileNET architecture has been 

plotted, which reveals that there is less deviation when 

comparing training and validation instances. 
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Figure 4 Comparison of Recall Vs Loss for MobileNET 

architecture 

B. CNN 

Nextly, we present the performance measures like 

accuracy, precision, and recall for the CNN architecture. 

In the below figure 5, a comparison graph showing 

training accuracy Vs training loss and validation accuracy 

Vs validation loss for CNN architecture has been plotted, 

which reveals that there is less deviation when comparing 

training and validation instances. 

 

Figure 5 Comparison of Accuracy Vs Loss for CNN 

architecture 

In the below figure 6, a comparison graph showing 

training precision Vs training loss and validation precision 

Vs validation loss for CNN architecture has been plotted, 

which reveals that there is less deviation when comparing 

training and validation instances. 

 

Figure 6 Comparison of Precision Vs Loss for CNN 

architecture 

In the below figure 7, a comparison graph showing 

training recall Vs training loss and validation recall Vs 

validation loss for CNN architecture has been plotted, 

which reveals that there is less deviation when comparing 

training and validation instances. 

 

Figure 7 Comparison of Recall Vs Loss for CNN 

architecture 

Algorithm Accuracy Precession Recall 

ANN 65 58 73 

SVM 60 50 52 

CNN 60 62 67 

Mobile Net 68 70 72 

 

D. Inference/ Discussion 

Outcomes as expected were obtained for our deep 

learning-based model incorporating two architectures like 

MobileNET and CNN, demonstrating outstanding CVD 

prediction from retinal images. Our model attempting the 

CVD prediction exhibited accurate classification potential 

that can distinguish both the existence and non-existence of 
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CVD risks in people based on the retinal image indications. 

Extensive comparative study undertaken by us also 

confirmed that our model was efficient in making the 

prompt detection and affordable diagnosis of CVD risks in 

people and showed its considerable influence over the 

clinical settings. 

V. CONCLUSION  

The suggested method that uses retinal pictures and 

deep learning to predict cardiovascular disorders shows 

potential in applying artificial intelligence to support early 

identification and risk assessment. The technology may be 

able to detect patterns and indicators linked to 

cardiovascular risk factors by examining retinal images, 

giving medical practitioners important new information. 

Thorough training, validation, and testing are used to assess 

the effectiveness of the system and guarantee its accuracy 

and dependability. Incorporating a non-invasive and easily 

accessible technique to enhance current diagnostic 

procedures, this technology has the potential to completely 

transform the prediction of cardiovascular disease if it is 

implemented properly. To improve patient outcomes and 

treatment, further investigation and validation are required 

to optimize and fine-tune the system. 

Still, additional verification along with implementation 

in healthcare environments are required to determine the 

model's practical applicability and role in improving the 

treatment of patients. Tackling issues about generalization 

and sustainability is critical for securing broad acceptance 

and optimizing the model's favourable influence on how 

healthcare is provided. 
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