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Abstract—Braille translation from natural scenes is a
complex task, primarily due to the lack of adequately labeled
datasets. Most existing studies focus on specific aspects, such
as segmenting Braille or detecting individual characters, rather
than addressing the entire translation process. To address this
gap, we propose a unified model capable of translating Braille
from natural scenes, paired with a custom-built dataset that
reflects real-world scenarios.
Traditional methods employ a two-stage process involving
bounding box-based detection followed by text decoding.
However, these methods face difficulties with challenges like
poor lighting, distortions, and obstructions. To overcome these
limitations, our approach adapts FOTS for both segmentation
and decoding, benefiting from its high accuracy and real-time
detection capability to handle complex environments effectively.
To further enhance the accuracy of Braille decoding, we will
incorporate the Circular Hough Transform for identifying the
circular dot patterns characteristic of Braille. A diverse dataset
will be created to support this model, combining images from
online sources, Google Street View, and manually crafted Braille
samples, ensuring comprehensive coverage to improve its ability
to generalize across various conditions.

Index Terms—Braille translation, Custom Dataset, Circular
Hough Transform, text decoding, segmentation, FOTS

I. INTRODUCTION

Braille is a crucial tactile writing system for the visually
impaired, but translating it in natural scenes—like on signs and
product labels—remains a challenge due to varying surfaces
and environmental factors.
Traditional systems rely on tactile perception, limiting us-
ability for those with partial vision loss. Automated Braille
translation faces issues like noise, lighting fluctuations, and
occlusions, and existing methods typically segment and decode
Braille separately. However, they lack a unified framework for
handling real-world variability effectively.
This paper proposes a model for Natural-Scene Braille Trans-
lation, using YOLO for accurate, real-time segmentation and
the Circular Hough Transform to decode Braille dots. This
approach aims to improve speed, accuracy, and accessibility
for visually impaired users.

To support the model, a custom dataset has been curated, in-
corporating Braille from online repositories, custom samples,
and Google Street View images. Unlike prior works, which
have limitations in handling real-world variability and real-
time performance, our model integrates YOLO and the Circu-
lar Hough Transform to address these challenges, enhancing
Braille detection in diverse environments.

Fig. 1. Workflow

II. IMPLEMENTATION

Fig. 2. Braille Spotting Model

A. Braille Image Collection

The process of data preparation involves transcribing
Braille using a Braille slate from text extracts sourced from a
variety of materials. Key data sources include:
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• Text Sources: Images were collected from newspaper
columns and Braille textbooks, providing structured ex-
amples of printed Braille.

• Online Sources: Live-scene images with Braille signs
were sourced from Google Street View, showcasing real-
world conditions like variable lighting and orientations.

• Total Images: A total of 120 images were gathered, with
60 images from each source.

• Total Annotated Characters: Approximately 7,000
Braille characters were annotated to create a robust
dataset for training and evaluation.

Fig. 3. Custom Dataset Creation

B. Annotations

• Images were annotated using CVAT (Computer Vision
Annotation Tool) to ensure accurate and consistent label-
ing of Braille characters.

• Annotations followed a standardized Braille convention,
as illustrated in the attached image.

Fig. 4. Braille Conversion

C. Dataset Generation

• Anchor Boxes: Anchor boxes for Braille characters
were generated using k-means clustering, optimizing their
parameters for [aspect-ratio, angle]. This ensures that the
anchor boxes align well with the shapes and orientations
of Braille characters in the images.

• Image Splitting: To standardize input for the model,
images were split into fixed sizes of 256 pixels x 256 pix-
els, making them compatible with the model architecture
while retaining sufficient detail for character detection.

• Bounding Box Format: Each bounding box is defined in
the format [class name, x center, y center, width, height,
theta]

D. Segmentation Model

• The model uses Darknet-53 (YOLOv3) as its backbone.
The backbone provides a good number of convolution
layers for the model to extract features.

• All convolutional blocks consist of convolutional layers,
followed by batch normalization and finally SiLU activa-
tion layer.

• The Hough Transform Module creates a mask to learn
the regions with circular silhouette which is particularly
useful for the model to learn and extract features from.
The Transformed image is then followed by convolutional
layers to extract features.

Fig. 5. Hough Transform

• The output of the Hough Module and the backbone is
summed and passed to the Braille Detection Module.
The Braille Detection Module further uses sequential
convolutions to predict the bounding boxes.

• The output of the bounding boxes form a mask which is
summed with the hough module and then passed to the
Braille Recognition Model. It uses FCNNs to then predict
the classes of all bboxes present.

• Braille detection module uses Dice Loss and the classifi-
cation / recognition module uses multi-cross entropy loss.
The overall loss is defined as:

Ldice = 1−
2 · ppred · y + δ

p2pred + y2 + δ

Lcls = −
N∑
i=1

log(pi)

Loverall = Lcls + λ · Ldice

here, we used λ as 1 as suggested by the FOTS algorithm.

III. IMPLEMENTED WORK

Significant strides have been made across various compo-
nents of the project. To begin with, the architecture for the
Braille spotting model has been finalized.
The model is designed with a YOLO backbone for feature
extraction and includes advanced techniques such as the
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Hough Transform and RoI rotation to enhance the accuracy
of Braille detection and recognition. On the data collection
side, we have successfully transcribed nine pages of Braille
text using a Braille slate. Additionally, around 40 pages of
Braille text have been annotated with the help of the Computer
Vision Annotation Tool (CVAT), resulting in the annotation
of approximately 7,000 Braille characters. This process has
been completed, ensuring the availability of a high-quality
dataset for training and evaluating the model. Moreover, a set
of 60 Braille signage images sourced from Google Street View,
representing real-world environments, has been incorporated
into the dataset to further strengthen its diversity.
The dataset has been tested with several leading object
detection models, such as Faster R-CNN, YOLOv5, and
YOLOv11n, to evaluate their performance in detecting Braille.

IV. RESULTS

A. Braille Spotting Model

Braille Spotting Model outperforms Faster R-CNN,
YOLOv5, and YOLOv11 by combining YOLO for fast, real-
time segmentation with the Circular Hough Transform for
accurate Braille dot recognition. This unified approach ensures
high accuracy even in challenging conditions like occlusions
and lighting variations. While Faster R-CNN is slower and
YOLO models trade accuracy for speed, our model strikes
a better balance, providing robust performance in real-time
applications. Additionally, our custom dataset improves gen-
eralization across diverse Braille formats, making it more
adaptable to real-world scenarios.

Fig. 6. Loss Graph for Braille Spotting Model

Fig. 7. Prediction Results for Braille Spotting Model

B. Faster R-CNN

Faster R-CNN is a two-stage object detection model that
utilizes a Region Proposal Network (RPN) to generate re-
gion proposals, followed by a convolutional neural network
for classification and bounding box regression. This model
is known for its high accuracy, especially when detecting
small or complex objects in cluttered or noisy environments.
However, it is computationally intensive and slower than other
models like YOLO. In your project, Faster R-CNN was applied
to detect Braille text within complex, crowded scenes, where
precise identification of small or overlapping Braille characters
was essential.

Fig. 8. Classification and Bounding Box Loss for Faster R-CNN

Fig. 9. Additional Results for Faster R-CNN
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C. YOLOv5

YOLOv5 is a real-time object detection model designed to
offer both speed and efficiency. It processes an entire image
in a single pass, predicting both the bounding boxes and class
labels for detected objects. The model provides a great balance
between speed and accuracy, making it ideal for dynamic,
real-world environments where rapid detection is crucial.
YOLOv5 was used in your dataset to quickly identify Braille
text in challenging conditions such as varying lighting and
partial obstructions, ensuring real-time performance without
sacrificing too much accuracy.

Fig. 10. Loss Graph for YOLOv5

Fig. 11. Prediction Results for YOLOv5

D. YOLOv11

YOLOv11n is a lightweight variant of the popular YOLO
model, optimized for environments with limited computa-
tional resources. While it offers faster inference times, it may
sacrifice some accuracy compared to YOLOv5. This model
is particularly beneficial for use in applications running on
devices with limited processing power, such as mobile phones
or edge devices. YOLOv11n was applied in your project to
perform rapid Braille detection in situations where resources
were constrained, making it suitable for deployment in real-
time applications on smaller or less powerful devices.

Fig. 12. Loss Graph for RCNN

Fig. 13. Prediction Results for YOLOv11

V. COMPARATIVE ANALYSIS

This section provides a detailed comparison of performance
metrics for various Braille detection models, including Faster
R-CNN, YOLOv5, YOLOv11, and our proposed Braille Spot-
ting model. The evaluation encompasses key metrics such
as classification loss (Cls Loss), bounding box loss (BBox
Loss), and accuracy (mAP@0.5). The results demonstrate the
strengths and weaknesses of each model in terms of efficiency
and accuracy in detecting Braille characters. All experiments
were conducted under consistent conditions to ensure fairness
and reproducibility.

Model Accuracy Cs Loss Bbox Loss
Faster R-CNN 79.56% 0.0481 0.1020

YOLOv11n 84.74% 0.804 0.92
YOLOv5 85.51% 0.432 0.632

Braille Spotting Model 92.82% 0.699 0.830

TABLE I
PERFORMATION MATRIX OF BRAILLE DETECTION MODELS

VI. CONCLUSION

This work presents a model for automatic Braille translation
from natural scenes, overcoming challenges like lighting
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variations, skewed orientations, and partial occlusions. By
using YOLO for text segmentation and Circular Hough
Transform for dot recognition, the model delivers accurate
and fast real-time translation. A custom dataset with diverse
Braille samples improves adaptability.

Integrating YOLO with the FOTS algorithm enables seam-
less Braille detection, offering a practical solution for visually
impaired individuals in dynamic environments. Future work
will focus on refining the model to handle complex formats,
enhance robustness, and optimize for mobile devices, advanc-
ing accessibility for those with vision impairments.
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