
AI Enhanced Wearable Device for the Visually 
Impaired 

 

Shobana T S 

Information Science and Engineering 
B.M.S. College of Engineering 

Bangalore, India 
0000-0003-3147-4789 

Himani M 
Information Science and Engineering 

B.M.S. College of Engineering Bangalore, 
India  

Monisha H M 

Information Science and Engineering 
B.M.S. College of Engineering 

Bangalore, India 
 

 

Jyotiprakash Panda 
Information Science and Engineering 

B.M.S. College of Engineering 
Bangalore, India  

Rakshitha M 
Information Science and Engineering 

B.M.S. College of Engineering 
Bangalore, India  

 

 

Abstract Our wearable device is a one stop solution for the 
daily challenges faced by individuals with both visual and 
auditory impairments. It is a versatile wearable assistive device 
designed to enhance their accessibility and readability of 
braille. The core innovation lies in the integration of three key 
functionalities: Braille detection, real-time object detection, 
and intuitive multi-sensory feedback. The device captures real- 
time images to accurately identify Braille text, which is then 
promptly converted into an audio output delivered in the user's 

 

      

object detection capabilities continuously monitor the user's 
surroundings, providing timely alerts upon the detection of 
potential obstacles, thereby significantly improving mobility. 
The system's provision of dual feedback mechanisms both 
audio signals and vibration alerts ensures comprehensive 
accessibility for users with diverse sensory profiles. By 
effectively combining these features, this wearable aid aims to 
foster greater independence, bolster user confidence, and offer 
a practical and versatile solution to the everyday challenges 
encountered by the visually and hearing-impaired community. 

Keywords Accessibility, Assistive Technology, Braille 
Detection, Object Recognition, Text-to-Speech, Raspberry Pi, 
Multi-Sensory Feedback, Wearable Device. 

 
I. INTRODUCTION 

Visual impairment is one of the biggest challenges that 
millions of people face globally, affecting their independence 
and quality of daily life. The World Health Organization 
reports that approximately 1.3 billion individuals experience 
some form of visual impairment, with 36 million being 
completely blind. [1] For centuries, individuals with visual 
impairments have relied on traditional solutions such as 
human assistance, guide canes, and Braille to navigate their 
surroundings. The lack of efficient assistive technologies has 
led to difficulties in education, employment, and other 
activities for the visually impaired community. 

Assistive technology has evolved as early innovations 
focused on tactile systems like Braille, requiring basic 
literacy for the visually impaired. The introduction of audio 
books and text-to-speech systems [2] in the late 20th century 
expanded access to literature and information, yet these 
solutions lacked real-time responsiveness and required 
manual input. Early attempts also included sensor-based 
devices [3] that provided auditory feedback for obstacle 
detection, but these were often inaccurate and unreliable. The 
dependency on static, pre-recorded information meant that 
users still faced limitations in navigating unfamiliar 
environments. 

Recent advancements have utilized Artificial Intelligence 
and computer vision to develop more dynamic assistive 
devices. The integration of AI-powered object recognition 
and text-to-audio conversion brought a shift, allowing 
devices to interpret surroundings more effectively. Projects 
such as Raspberry Pi-based text-to-audio converters and 
smartphone applications using optical character recognition 
(OCR) demonstrated the potential of these innovations in 
improving accessibility [4]. 

Today, modern assistive devices use deep learning, 
natural language processing (NLP), and real-time object 
detection to provide visually impaired individuals with an 
interactive experience. Systems like YOLO-based object 
recognition, computer vision-powered autonomous 
navigation, and mobile-based AI assistants have transformed 
assistive technology. [5] These solutions provide users with 
real-time audio feedback about their surroundings, enabling 
them to identify obstacles, recognize faces, and even 
interpret digital text on screens. [6] Furthermore, wearable 
AI-based solutions such as smart glasses and AI-powered 
navigation aids are pushing the boundaries of accessibility 
[13]. 

Despite these advancements, challenges remain in 
making assistive technology more affordable and widely 
accessible. Many solutions rely on cloud services, which 
may not always be available due to internet dependency. 
Future research should focus on developing cost-effective, 
offline-capable solutions that support local AI processing. By 
continuously innovating and integrating AI-driven 
accessibility tools, society can work toward creating an 
inclusive environment where visually impaired individuals 
can navigate the world with confidence and independence. 

 
II. RELATED WORKS 

S. Zafar et al., 2022 [1] conducted a comprehensive 
review of assistive devices for visually impaired persons, 
categorizing them based on functionality and performance. 
They highlighted essential characteristics, conducted a 
feature-based quantitative analysis, and identified 
limitations for future improvements in device design. 

D. T. V. Pawluk et al, 2015 [2] reviewed haptic 
technology design for visually impaired individuals, 
emphasizing the importance of behavioural research, user 
characteristics, and training in developing effective assistive 
devices. 
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Sahoo and Choudhury et al, 2024 [3] investigated 
computer vision for use in assistive technology, highlighting 
object and face recognition and gestures as interfaces. They 
highlighted the promise of increased mobility and 
independence for users with multiple disabilities, along with 
ethical issues, user-centric design, and the necessity of more 
research to enhance accessibility and practical effectiveness. 

Myo Min Aung et al, 2024 [4] created a YOLOv4 object 
recognition system for the visually impaired using a 
Raspberry Pi and the COCO dataset. With 100% real-time 
object detection efficiency, the system focuses on user- 
centered design. User feedback from a hospital exhibition 
validated its usability and ability to improve safety and 
independence for users. 

Parenreng et al, 2024 [5] created a visual aid system for 
the blind using Convolutional Neural Networks for object 
detection and ultrasonic sensors for measuring distance. The 
prototype glasses had 84.3% accuracy in detecting objects 
and a 2.1 cm error in distance measurement, improving 
navigation and mobility for users. 

 
K. Thopate et al, 2024 [6] created "Vision Voice," a 

Raspberry Pi-based application that reads printed text aloud 
through OCR and gTTS for visually impaired individuals. 
Though effective, it has problems with small print and 
distance precision. Future developments will improve noise 
reduction, multilingual functionality, and ease of use. 

 
Md. Zahidul Hasan et al, 2022 [7] employed the YOLO 

V3 model for real-time object detection and audio feedback 
distance measurement for navigation. Although effective, the 
system is challenged by dense or low-light environments. 
The future will focus on enhancing adaptability and sensor 
fusion. 

Naga Prabhas Katakam et al, 2024 [8] surveyed image- 
to-audio methods for the blind using CNNs, LSTMs, and 
TTS systems. They pointed out problems with background 
management, character separation, and dataset dependency. 
Future research will focus on enhancing adaptability, 
decreasing processing time, and increasing datasets for 
enhanced user experience. 

Hasventhran Baskaran et al, 2019 [9] created Smart 
Vision, a Raspberry Pi device based on Microsoft's 
Computer Vision API to provide real-time audio 
descriptions. Though efficient, it is dependent on stable 
internet and poses privacy issues. Improvements in future 
include higher accuracy, facial expression recognition, and 
multi-language capabilities. 

Abhishek Brajvasi and Bhupendra Singh Kirar, 2024 [10] 
created an Android-based real-time picture-to-audio 
converter using TensorFlow Lite for object identification and 
TTS. It is effective, but it struggles in low-visibility 
conditions and may be improved with increased processing 
speed. 

O. Ceoca and E.-H. Dulf, 2024 [11] developed an 
assistive helmet for visually impaired individuals featuring 
obstacle avoidance, fall detection, and track monitoring, 
enhancing mobility and independence while maintaining 
affordability. 

K. Swathi et al, 2024 [12] designed smart glasses for the 
visually impaired, utilizing Raspberry Pi 4, a Pi Camera to 
detect objects, a GPS module to track locations, and 
ultrasonic sensors to measure distances. The system provides 
audio feedback and remote monitoring through caregivers, 
boosting safety and independent navigation. Usability and 
adaptability challenges exist despite remarkable 
enhancements in mobility. 

Abidi et al, 2024 [13] surveyed navigation devices for the 
visually impaired, classified as Visual Imagery, Non-Visual 
Data, Map-Based, and 3D Sound Systems. Advances in 
sensors, AI, and smartphones improving autonomy were 
noted while emphasizing the displacement of traditional 
solutions by electronic systems and advocating a need for 
continual innovation. 

Ruiqi Cheng et al, 2018 [14] developed a real-time visual 
localization approach for the visually impaired, utilizing 
multi-modal images and GNSS signals. The method 
significantly enhances positioning accuracy at key locations, 
improving navigation effectiveness for users in real-world 
scenarios. 

S. R. Sankaranarayanan et al, 2024 [15] developed an 
innovative sensor-free obstacle detection system for visually 
impaired individuals using computer vision and audio 
feedback. The prototype enhances navigation safety and 
autonomy, receiving positive results during testing with real- 
world scenarios. 

 

Fig. 1: Basic Prototype of the proposed system 

III. PROPOSED SYSTEM FOR THE WEARABLE DEVICE 

The wearable device in Fig. 2 captures real-time images 
to analyze its surroundings. An image processing unit 
determines whether the captured image contains Braille text 
or requires object detection. If Braille is detected, it is 
translated into readable text and converted into audio, which 
is then played for the user. If no Braille is found, the system 
performs object detection to identify obstacles, providing 
tactile feedback through vibrations. Together, audio and 
vibration outputs offer real-time assistance for individuals 
with visual, hearing, or dual impairments. 
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A. Training the Braille-to-English Translation Model 

The Braille translation model was developed using the 
open-source tool Roboflow, leveraging a labeled dataset 
of 10,382 images. Of these, 8,305 were used for training, 
1,038 for validation, and 1,039 for testing. 

 
B. Data Acquisition 

Live images of the Braille text and the nearby 
surroundings are captured using Raspberry Pi Camera. 
This camera is connected to the Raspberry Pi processor 
via the CSI Port. 

C. Braille to Text Model 

Prior to prediction, the image captured by the Raspberry 
Pi Camera undergoes preprocessing with OpenCV to 
enhance the visibility of Braille dots using grayscale 
conversion and thresholding techniques. The trained 
model then detects Braille patterns from the live stream 
and translates them into the corresponding English 
alphabet. 

 
D. Regional Text Translation Module 

The translated text from the Braille translation model is 
fed into the regional language translation module 
through a pipeline. This module utilizes IndicTrans2, a 
powerful model by AI4Bharat, designed for seamless 
translation of English text into multiple Indian regional 
languages. 

E. Text-to-Speech Module 

The regional text is subsequently processed by the text- 
to-speech module, developed using the IndicParler TTS 
package. This model supports 69 distinct voices, 
offering a rich range of emotional expressions. The final 
audio output is generated and saved as a .wav file. 

F. Playing the final Audio translation 

The output audio file is played back, with the sound 
transmitted through earphones connected to the 
Raspberry Pi. 

 

Fig. 2: Architecture of the proposed system 

G. Object Detection Using YOLOv8 

YOLOv8 You Only Look Once performs object 
detection in a single neural network pass resulting in fast 
predictions. The input image is divided into an S×S grid, 
where each grid cell predicts bounding boxes along with 
their associated class probabilities and confidence 
scores. Each predicted bounding box includes 
coordinates, width, height, and an objectness score 
indicating the likelihood of containing an object. During 
training, predictions are matched with ground truth 
bounding boxes using the Intersection over Union (IoU) 
metric. A prediction is considered accurate if its IoU 
with the ground truth exceeds a certain threshold. Non- 
Maximum Suppression (NMS) is applied to eliminate 
overlapping predictions by retaining only the highest- 
confidence boxes. The loss function in YOLOv8 
combines localization loss, confidence loss, and 
classification loss to train the network efficiently. The 
model is ideal for deployment in applications requiring 
low latency and high throughput. 

H. Model Optimization Using OpenVINO 

Direct deployment of the model can result in increased 
inference latency and higher memory consumption, 
which is not appropriate for real-time environments. 
Therefore, the model is converted into Open Visual 
Inference and Neural Network Optimization (Open 
VIN  
and BIN). Open VINO is designed to accelerate deep 
learning models for edge devices and different 
computing environments). Then we optimise the model 

 

      
Framework (NNCF), specifically Post-Training 
Quantization (PTQ) method. This process converts the 
model from high-precision (FP32) to low-precision 
(INT8), reducing memory usage and increasing 
inference speed while maintaining accuracy. A 
representative subset of the COCO dataset is used as a 
calibration dataset to keep a check on the activation 
ranges and select appropriate scaling factors. 

I. Direction Estimation Based on Bounding Box Position 

To prompt the direction of the obstacles in the user's 
path the object direction is inferred using the horizontal 

s bounding box. For each 
object detected by the YOLOv8 model, the center x- 
coordinate of its bounding box is computed. Based on its 
relative position within the frame, the object is classified 
into one of three spatial zones: Left, Center, or Right. 
This classification is done by dividing the frame width 
into three equal vertical regions. If the bounding box 
center falls in the leftmost third, the direction is Left, if 
in the middle third, it is labeled Center and otherwise, it 
is categorized as Right. 

The formula in Eq. (1) is used to determine the spatial 
direction (Left, Center, or Right) of a detected object 
within a video frame by calculating the center x- 
coordinate of its bounding box relative to the frame's 
width. 

X  + X ) / 2 (1) 
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Left:  
 

Center:  
frame_width 

Right:  

Here, 
Xmin = The X coordinate of the left boundary of the 

Xmin = The x-coordinate of the right boundary of the 

centerX = The horizontal center point of the bounding 
 2 

frame_width = The total width (in pixels) of the video 
frame or image in which the object is detected. 

 
J. Distance Estimation Using HC-SR04 Ultrasonic Sensors 

Multiple HC-SR04 ultrasonic sensors are arranged in a 
semi-circular configuration. Each sensor is oriented to 
cover a specific zone (left, center and right) 
corresponding to the directional zones used in visual 
detection. The HC-SR04 sensor operates by emitting 
ultrasonic pulses and measuring the time interval 
between transmission and reception of the echo. The 
distance is calculated using the standard formula in Eq. 
(2): 

distance = (Echo Time × Speed of Sound) / 2 (2) 

where the distance is in cm. 

When a YOLOv8 detection is labeled as being in a 
certain  direction  (e.g.,  "Left"),  the  corresponding 

 

 
object from the user. 

K. Audio and tactile feedback 

Audio feedback is provided through earphones, 
conveying detected object names, directions, and 
distances. Feedback via vibrations is also provided by 
the ERM (Eccentric Rotating Mass) vibration motors. 
When an object is detected within a predefined safety 
threshold, for example set at 1.5 meters, the motor is 
triggered to vibrate. The vibration intensity is set 
proportionally to the proximity of the obstacle, that is 
stronger vibrations are emitted as the object approaches 
the user. 

Table I lists all the hardware components necessary for 
assembling the wearable device. 

 
 
 
 
 
 
 
 

 
Table I: Hardware specifications of the device 

IV. SYSTEM EVALUATION 
 

A. Evaluation of Braille to Text Model 

To evaluate the performance of our Braille text 
recognition system, we experimented with four different 
models. Among various evaluation metrics, we prioritized 
precision because accurate identification of Braille characters 
is critical false positives can lead to incorrect translations, 
significantly impacting the usability of the device for 
visually impaired users. The precision scores of the four 
models are presented in Table II, providing a clear 
comparison of their performance 

 
 
 
 
 
 
 
 
 
 

 

Table II. Precision Scores of the various trained models 

Among the models tested, the one trained and deployed 
using Roboflow achieved the highest precision, ensuring the 
most reliable character detection. Additionally, the Roboflow 
model demonstrated the lowest inference latency, which is 
essential for real-time applications. Its seamless integration 
pipeline further simplified deployment on the Raspberry Pi, 
making it the most practical and efficient choice for our 
wearable assistive system. 

 
B. Evaluation of the Object Detection Model 

The optimization of the YOLO object detection model 
using OpenVINO's INT8 quantization significantly 
enhanced performance. The optimized model (Model 2) 
demonstrated a 35.46% reduction in latency, dropping from 
51.59ms to 33.30ms, while also improving throughput by 
54.95%, achieving 30.03 FPS. Despite a slightly higher load 
time, the model size was nearly halved, and memory usage 
decreased, making it more efficient for real-time 
applications. These improvements highlight how model 
optimization not only speeds up inference but also reduces 
resource consumption, which is crucial for edge 
deployments like Raspberry Pi. Fig. 3 illustrates the 
substantial reduction in latency. 

 
We evaluated multiple versions of the YOLO object 

detection models YOLOv6, YOLOv7, and YOLOv8 for 
our Braille translation system. While YOLOv6 and 
YOLOv7 offered moderate performance with frame rates 
around 4 8 FPS and latency ranging between 120 250 ms, 
YOLOv8 showed improved efficiency, delivering up to 10 
FPS and lower latency. The optimized version of YOLOv8 
significantly outperformed all others, achieving a high frame 
rate (~38 FPS), minimal latency (~33 ms), and a compact 
model size (~25 MB), making it highly suitable for real-time 
Braille detection on resource-constrained devices. These 
values are depicted in Table III. Additionally, the optimized 

Model Precision 

Roboflow 3.0 Model 97.7% 

Azure AI Vision Model 92% 

OpenCV Computer Vision 
Model 

83 % 

Convolutional Neural 
Network Model with Optical 
Character Recognition 

78.60% 

Component Specification 
Processor Raspberry Pi 4 

Camera Module Raspberry Pi Camera 
Module V1 

Vibration Motors 10mm Coin-Type ERM 
Vibration Motors 

Ultrasonic Sensor HC-SR04 Ultrasonic 
Sensor 
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YOLOv8 model exhibited reduced memory consumption 
and faster inference speeds, contributing to smoother and 
more resp t and 
compatibility with OpenVINO further reinforced its 
selection for integration into the wearable system. 

 

Fig. 3: YOLO Optimization Performance Comparison 
 

YOLO 
Version 

FPS (ms) Latency 
(ms) 

Model Size 
(MB) 

YOLOv6 ~5-8 ~120-200 40-100 
YOLOv7 ~4-7 ~140-250 60-120 
YOLOv8 ~6-10 ~100-170 20-70 

YOLOv8 
(optimised) 

~38 ~33 ~25 

Table III. Performance Measure of YOLO Models on CPU 

 
V. RESULTS 

Fig. 4 displays the output generated by our Braille 
translation model trained using Roboflow. The model 
successfully detects and labels 21 Braille characters, each 
outlined with distinct colored bounding boxes and class 
labels. This demonstrates the model's strong capability in 
accurately identifying and localizing Braille symbols, a 
crucial step in translating tactile Braille inputs into readable 
text. The consistent detection performance highlights the 
effectiveness of the Roboflow training pipeline for fine- 
grained visual recognition tasks like Braille decoding. 

 

Fig. 4: Output of Braille Character Detection Using 
Roboflow-Trained Model 

Fig. 5 shows the real-time output of an object detection 
system, identifying and localizing a person and a bottle with 
associated confidence scores and estimated distances. The 
model runs efficiently at around 37 FPS with 27 ms latency, 
making it suitable for real-time applications. The bounding 
boxes display object type, confidence (e.g., person: 0.96), 
position (e.g., center or left), and proximity (e.g., 1.5m or 
0.3m). A summary at the bottom highlights detected close 
objects, which can be useful for applications like assistive 
navigation or obstacle avoidance. 

 

Fig. 5: Real-time Object Detection with Distance and 
Position Estimation 

 
Fig. 6: Prototype of the Wearable Device 

Fig. 6 illustrates the wearable device developed by 
integrating various hardware components along with the 
deployed models, designed to provide a smooth and 
seamless user experience. 

 
CONCLUSION 

This study delves into the breakthroughs in visually 
impaired aid technologies, facilitated by the collaboration of 
artificial intelligence, sensor fusion, and multimodal data 
processing. The research emphasizes the ways in which AI- 
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based orientation systems, in combination with real-time 
obstacle detection and adaptive feedback processes, are 
significantly enhancing mobility and spatial perception 
among users. The importance of haptic feedback, auditory 
notifications, and computer vision-based identification in 
empowering intuitive environmental interaction is also 
analyzed. Additionally, the potential of AI-based Braille text 
identification and translation to different Indian regional 
languages as an important value addition to accessibility for 
easy understanding of written text is introduced. 

 
The study also takes into consideration the significance of 
vibration feedback during object detection in enhancing 
accessibility for hearing-impaired individuals, allowing for 
the delivery of vital spatial awareness information. Riding on 
these developments, the study expects subsequent 
breakthroughs in the fields of depth perception, advanced AI- 
based obstacle detection, and advanced feedback 
mechanisms to further optimize these assistive technologies. 
The final aim is to develop assistive technologies that are 
more efficient, accessible everywhere, and very reliable, thus 
enabling visually impaired people to move around the world 
in a more confident and independent manner. 
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