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Abstract: The most significant advancements over time with relation to every type of limitation. 

We begin by outlining the fundamental ideas from combinatorial theory. Next, we present a 

summary and a comparative analysis of various propagation methods that achieve hyper-arc 

consistency, limits, range, and arc consistency, respectively. Furthermore, the symmetric all 

different constraint and the least weight all different constraint are two variations of the all 

different constraint that are examined.  
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1. Introduction 
The well-known "all different" constraint, which mandates that every variable in the 

constraint be pairwise different, is one of the constraints found in almost all constraint 

programming systems. 

The significance of these "disequality constraints" was understood back in the early days 

of constraint programming. Lauriere [1], for instance, presented ALICE, "A language and a 

program for stating and solving combinatorial problems," in the 1970s. In this system, if a set of 

variables is given the keyword "DIS," it indicates that the variables must have distinct values. It 

specifies a global structure that is used to the advantage of the solution-finding process.  

It was also possible to define the constraint of difference as the well-known all different 

constraint after the advent of constraints in logic programming, for instance in the system CHIP 

[Dincbas, Van Hentenryck, Simonis, Aggoun, Graf, and Berthier[2]. Wallace, Novello, and 

Schimpf[3] established this requirement as all distinct in the system Eclipse. Nonetheless, all of 

the various constraints were internally handled as a series of disequalities in the early constraint 

(logic) programming systems; for instance, see Van Hentenryck [4]. Sadly, in doing so, the 

global information is lost. The propagation algorithm proposed by Regin [5], which takes into 

account all disequalities at once, was used to get the global view. 

The many constraints have been important throughout the development of constraint 

programming. This unique constraint is used in a number of articles and books to demonstrate 

the advantages of constraint programming, either by demonstrating the modeling power of the 

technique or by demonstrating how much faster issues can be solved when employing it. From a 

modeling perspective, the need for disjoint circuits to span a directed graph or issues based on 

permutations easily give rise to the all different constraint. There are many applications where 

each distinct restriction is crucial, such as Gomes and Shmoys' quasi-group completion problems 

[6], Barnier and Brisset's air traffic management [7, 8], Gronkvist's [9], and Tsang, Ford, Mills, 

Bradwell, Williams, and Scott's rostering difficulties [8]. Last but not least, numerous additional 

worldwide. 

 The various constraints have been thoroughly examined in constraint programming over 

the years. As we'll show, there are at least six distinct propagation methods for the all-different 

constraint, each of which achieves local consistency in a unique way or more quickly. Numerous 

algorithms in this list are based on operations research methodologies, such as matching theory 

and flow theory. With relation to the purview of this thesis, such propagation algorithms are 

particularly interesting. 
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The same underlying ideas are frequently used by the propagation algorithms. This 

chapter provides a comprehensive overview of all the constraints, which is likely to be 

considered the most well-known, influential, and extensively researched constraint in the subject 

of constraint programming, in an effort to make them more comprehensible, accessible, and 

cohesive. 

We showcase findings from combinatorial theory concerning the various constraints. 

These results are crucial to many of the propagation methods under consideration.  We provide 

formal definitions for various concepts of local consistency that are utilized in relation to the 

various constraints. 

The treatment comprises an explanation of the specific concept of local consistency 

about the all-different constraint, in addition to an algorithmic description that accomplishes that 

local consistency.  

Initially, a symmetric variant of every restriction is examined. Next, a linear objective 

function is introduced and used in conjunction with the all different constraint to exploit the 

weighted all different constraint.  

takes into account the all different polytope, which is a specific description of the all 

different constraint's solution set. Constraints on combinational backgrounds. Models involving 

integer linear programming can make use of this explanation. 

2 .Combinatorial Background 

 

2.1 All different and Bipartite Matching  
The equivalence of a solution to the all different constraint and a matching in a  bipartite 

graph. 

 

Definition 2.1.1 (All different constraint). Let x1, x2, .…. xn be variables with respective finite 

domains D1,D2,…..Dn. Then all different (x1,…..xn) = {(d1,….dn) d1 ε Dt, d1 ≠ dj for i≠j}. 

 

Definition 2.1..2 (Value graph). Let X = x1, x2,….xn be a sequence of variables with respective 

finite domains D1,D2,…….Dn. The bipartite graph G = (X∪ DX,E) with E = {xid dεDi} is 

called the value graph of X. 

Theorem 2.2Let X = x1, x2,…..,xn be a sequence of variables with respective finite domains 

D1,D2,……,Dn. Let G be the value graph of X. Then (d1,……,dn) ∈ all different (x1,…..,xn) if 

and only if M = {x1d1,…..,xndn} is a matching in G. 

Proof An edge xidi (for some i ∈{1,…..,n}) in M corresponds to the assignment xi = di. As no 

edges in M share a vertex, xi ≠ xj for all i≠ j.  

Example .1 We want to assign four tasks (1, 2, 3 and 4) to five machines (A, B, C, D and E). To 

each machine at most one task can be assigned. However, not every task can be assigned to 

every machine. Table 3.1 below presents the possible combinations. For example, task 2 can be 

assigned to machines B and C. 

 

Task Machines  

1 B, C, D, E 

2 B, C 

3 A, B, C, D 

4 B,C  

 

Table 1. Possible task machine combinations 
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Figure .1. The value graph for the task assignment problem of Example 2.3. Bold edges form a 

matching covering all tasks. 

This problem is modelled as follows. We introduce a variable xi for task i = 1,……,4 

whose value represents the machine to which task i is assigned. 

The initial domains of the variables are defined by the possible combinations in Table .1. Since 

the tasks have to be assigned to different machines, we introduce an all different constraint. The 

problem is thus modelled as the CSP 

x1 ∈ {B, C, D, E}, x2 ∈ {B, C}, x3 ∈ {A, B, C, D}, x4 ∈ {B, C}, 

all different (x1, x2, x3, x4): 

The value graph of X = x1,….,xn is presented in Figure 3.1. The bold edges in the value graph 

denote a matching covering X. It corresponds to a solution to the CSP, i.e. x1 = D, x2 = B,              

x3 = A and x4 = C.  

 

2.3 Hall's Marriage Theorem 

A useful theorem to derive constraint propagation algorithms for the all-different 

constraint is Hall's Marriage Theorem1, Hall,[14]. 

 

If a group of men and women marry only if they have been introduced to each other 

previously, then a complete set of marriages is possible if and only if every subset of men has 

collectively been introduced to at least as many women, and vice versa2. 

 

The following formulation is stated in terms of the all different constraint. 

Theorem 2.4. Let x1, x2,……., xn be variables with respective definite domains D1, D2, ……, 

Dn. The constraint all different (x1,…….,xn) has a solution if and only if 

K< Dk                                                   (1) 

for all K ⊂ {x1,…..,xn}. 

 

Proof. The direct proof presented here is adapted from Schrijver [15], and originally due to 

Easterfield  [16]. Call a set K tight if equality holds in (3.1). Necessity of the condition being 

obvious, we prove sufficiency. We use induction, with the hypothesis that Theorem 3.4 holds for 

k variables with k < n. 

If there is a d ∈ Dn such that 

                                     x1 ∈ D1 \ {d}, . . . , xn−1 ∈ Dn−1 \ {d},  (2) 

all different(x1, . . . , xn−1) 

has a solution, then we are done. Hence, we may assume the opposite,  i.e. in  (3.2),  for each  d 

∈ Dn, there exists a subset K ⊆ {1, . . . , n-1} with |K|  > |DK \{d}|. Then, by induction, all 

different(x1, . . . , xn−1),  with x1 ∈ D1, . . . , xn−1 ∈  Dn−1,  has  a solution  if and  only  if for each  

d ∈ Dn there  is a tight subset K ⊆ {1, . . . , n-1} with  d ∈ DK. Choose  any  such tight subset K. 
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Without loss of generality,  K = {1, . . . , k}. By induction, all different (x1, . . . , xk)  has a 

solution, using all values in DK . Moreover, 

xk+1 ∈ Dk+1 \ DK , . . . , xn ∈ Dn \ DK , 

all different (xk+1, . . . , xn) 

has a solution.  This follows inductively, since for each L ⊆ {k + 1, . . . , n}, 

( ) LDLKDKULDDUDDU
kkki

KULi
ki

Li

=−+=−≥−=
εε

/
 

where the “≥” relation  is obtained by applying  condition  (3.1).  Then all different (x1, . . . , xn) 

has a solution, using all values in DK ∪ DL.           ¤ 

The following example shows an application of Theorem 3.4. 

Example .2.  Consider the following CSP 

x1  ∈ {2, 3}, x2  ∈ {2, 3}, x3  ∈ {1, 2, 3}, x4  ∈ {1, 2, 3}, 

all different (x1, x2, x3, x4). 

For  any  K  ⊆ {x1, x2, x3, x4} with  |K|  ≤ 3, we have  |K|  ≤ |DK |.  

For  K = {x1, x2, x3, x4} however,  |K| > |DK |, and  by Theorem  3.4 this  CSP  has  no 

solution.                                                                                                                    ¤ 

Theorem 3. The constraint all different (x1, . . . , xn) is bounds consistent  if and only if |Di| ≥ 1 (i 

= 1, . . . , n)  and 

i) for each interval  I: |KI | ≤ |I|, 

ii) for each Hall interval  I: {min Di, max Di} ∩ I = ∅ for all xi ∈/ KI . 

Proof. Let I be a Hall interval and xi ∈/ KI . If all different (x1, . . . , xn) is bounds  consistent, it 

has a solution when xi = min Di, by Definition 3.7. From Theorem 3.4 immediately follows that 

min Di ∈/ I. Similarly for max Di. 

Conversely, suppose all different (x1, . . . , xn) is not bounds consistent. Thus,  there exist  

a variable  xi  and  a value  di ∈ {min Di, max Di} for some i ∈ {1, . . . , n}, such that  all 

different (x1, . . . , xi−1, xi+1, . . . , xn) has no solution,  where  xj  ∈ D’j 

= [min(Dj  \ {di}), max(Dj  \ {di})]  for all j = i.  

By Theorem 3.4, there exists some K ⊆ {x1,….,xn}\{xi} such that |K| > |D’k |

Choose I=D′k and consider KI  with respect  to all different (x1, . . . , xn). 

Then either I is a Hall interval and di ∈ KI, or |K| > |KI |.                           

Example .1  Consider the following CSP 

x1 ∈ {1, 2}, x2  ∈ {1, 2}, x3 ∈ {2, 3}, 

all different (x1, x2, x3). 

Observe that the variables x1 and x2  both  have domain  {1, 2}, Hence, values 1 and 2 cannot  

be assigned to any other variable and therefore,  value 2 should be removed  from D3. 
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The algorithm detects this when the interval I is set to I = [1, 2]. Then the number of 

variables for which Di ⊆ I is 2. Since |I| = 2, I is a Hall interval. The domain of x3 is not in 

this interval, and {min D3, max D3}∩I = {min D3}. In order to obtain the empty set in the 

right hand side of the last equation, we need to remove min Di. The resulting CSP is bounds 

consistent.                       

Construct an algorithm that achieves bounds consistency on the all different constraint. 

Consider all intervals I = [l, u] where l ranges over all minimum domain values and u over all 

maximum do main values. There are maximally n2 such intervals, as there are n variables. 

Count the number of variables that are contained in I. If a Hall interval is detected, update the 

bounds of the appropriate variables.  This can be done in O(n)  steps.  Hence the time 

complexity of this algorithm is O(n3).  

However, it is more efficient to first sort the variables. To update the minimum 

domain values, we sort the variables in increasing order of their maximum domain value. 

Then we maintain an interval by the minimum and maximum bounds of the variables, which 

are inserted in the above order. Whenever we detect a maximum-length Hall interval, we 

update the bounds of the appropriate variables, reset the interval and continue with the next 

variable.  To update the maximum domain values, we can  apply the same method  after  

interchanging [min Di, max Di]  with [− max Di, − min Di]  for all i. 

The sorting of the variables can be done in O(n log n) time. As shown by Puget  [17], 

we can use a balanced binary tree to keep track  of the number of variables  within  an 

interval, which allows updates in O(log n) per variable. Hence the total time complexity 

reduces to O(n log n).   

An improvement on top of this was suggested and implemented by Lopez- Ortiz, 

Quimper, Tromp, and van Beek [18]. They noticed that while keeping track of the number of 

variables within an interval, some of the used counters are irrelevant. They give two 

implementations, one with a linear running time plus the time needed to sort the variables, 

and one with an O(n log n) running time.  Their experiments show that the latter algorithm is 

faster in practice. 

A different algorithm for achieving bounds consistency of the all different constraint 

was presented by Mehlhorn and Thiel [19]. Instead of Hall intervals, they exploit the 

correspondence with finding a matching in a bipartite graph, similar to the algorithm 

presented in Section 3.4.4. Their algorithm runs in O(n)  time plus the time needed to sort the 

variables  according  to the bounds  of the domains. 

Although  the worst-case time complexity of the above algorithms  is always O(n log 

n),  under  certain  conditions  the  sorting  can  be performed  in linear time,  which makes 

the algorithms  by Lopez-Ortiz  et al. [20] and Mehlhorn and Thiel [21] run in linear time. 

This is the case in many practical instances, for example when the variables  encode a 

permutation.  

3.1 Range Consistency 
Introduced an algorithm that achieves range consistency for the all different constraint. To 

explain this algorithm we follow the same procedure as in the  previous  subsection.  Again 

we use Hall’s Marriage Theorem to construct the algorithm. 

Definition 3.2  (Hall set). Let  x1, x2, . . . , xn  be variables  with respective finite  domains  

D1, D2, . . . , Dn. Given K  ⊆ {x1, . . . , xn}, define the interval IK = [min DK , max DK ]. K  is a 

Hall set if |K| = |IK |. 

Note  that in the  above  definition  IK  does not  necessarily  need to be a Hall interval, 

because KIK  = {xi | Di ⊆ IK } ⊇ K  

Theorem 3.3. The  constraint   all different (x1, . . . , xn) is  range  consistent  if and only if 

|Di| ≥ 1 (i = 1, . . . , n)  and Di ∩ IK = ∅ for each Hall set K ⊆ {x1, . . . xn} and each xi ∉ K. 
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Proof. Let K be a Hall set and xi ∈/ K. If all different (x1, . . . , xn) is range consistent, it  has  

a solution  when  xi = d for all d ∈  Di,  

Conversely,   suppose all different (x1, . . . , xn) is  not  range  consistent. 

Thus,  there  exist  a variable  xi  and  a value  di  ∈ Di  for some i ∈ {1, . . . , n}, such  that  all 

different (x1, . . . , xi−1, xi+1, . . . , xn) has  no  solution,  where xj ∈ D′j  = [min Dj  \ {di}, max 

Dj  \ {di}] for all  j ≠ i.  , there is some K. Note that D′K = IK . 

Consider IK with respect to all different (x1, . . . , xn). If K is a Hall set, then di ∈ IK . 

Otherwise,  |K| > |IK |. Then either some domain is empty,  or K  contains  a Hall set K′, and 

Dj  ∩ IK′   ≠ ∅ for some xj  ∈ K \ K′.                     

We can deduce a first propagation algorithm in a similar way as we did for bounds 

consistency.  Namely, consider all intervals I = [l, u] where I ranges over all minimum 

domain values and u over all maximum domain values. Then we count again the number of 

variables that are contained in I. If a Hall set is detected, we update the domains of the 

appropriate variables.  This is one in O(n)  steps. Hence the time complexity of this algorithm 

is O(n3), as there are again maximally  n2  intervals  to consider. 

A faster algorithm is presented by Leconte . We first sort (and store) the variables 

twice, according to their minimum and maximum domain value, respectively.  The main loop 

considers the variables ordered by their maximum domain value. For each such variable, we 

maintain the interval IK and start adding variables to K.  For  this  we consider  all variables  

(inner  loop),  now sorted  by their  minimum  domain  value. When we detect  a Hall set, 

updating the  domains  can be done in O(1) time,  either  within  or after  the  inner loop, and  

we proceed with the  next  variable.  As sorting the variables can be done in O(n log n) time,  

the total  time complexity  of this algorithm is O(n2). This time complexity is optimal,  as is 

illustrated in the  following example,  taken from Leconte . 

Example.3  Consider the following CSP 

xi ∈ {2i + 1}               for i = 0, 1, . . . , n, 

xi ∈ {0, 1, . . . , 2n + 2} for i = n + 1, n + 2, . . . , 2n, 

all different (x0, x1, . . . , x2n). 

In order to make this CSP range consistent, we have to remove the n + 1 first odd 

integers from the domains of the n variables whose domain is not yet a singleton.  This takes  

O(n2)  time.                                                                                                             ¤  

Observe that this algorithm has an opposite viewpoint from the algorithm for bounds 

consistency, although it looks similar.  Where  the  algorithm  for bounds  consistency  takes  

the  domains  (or intervals) as a starting point,  the algorithm for range  consistency  takes  the  

variables  instead.  But they both attempt to reach a situation in which the cardinality of a set 

of variables is equal to the cardinality of the union of the corresponding domains. 

4. Hyper-arc Consistency 

A hyper-arc consistency propagation algorithm for the all different constraint was 

proposed by Regin[5]. The algorithm is based on matching theory. We first give a 

characterization in terms of Hall’s Marriage Theorem.  

Definition 4.1 (Tight set). Let x1, x2, . . . , xn be variables with respective finite domains  D1, 

D2, . . . , Dn. K ⊆ {x1, . . . , xn} is a tight set if |K| = |DK |. 

Theorem .4.2 The constraint all different (x1, . . . , xn) is hyper-arc consistent if and only if 

|Di| ≥ 1 (i = 1, . . . , n)  and Di ∩ DK = ∅ for each tight 

set K ⊆ {x1, . . . xn} and each xi ∈/ K. 

Proof. Let K be a tight set and xi ∉ K. If all different (x1, . . . , xn) is hyper- arc consistent, it 

has a solution  when xi = d for all d ∈ Di, by Definition 3.6. 
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immediately follows that Di ∩ DK = ∅. 

Conversely, suppose all different (x1, . . . , xn) is not hyper-arc  consistent. 

Thus, there exist a variable xi and a value di ∈ Di  for some i ∈ {1, . . . , n}, such  that  all 

different (x1,….,xi−1, xi+1,……,xn) has  no  solution,  where 

Xj ∈ D′j = Dj \ {di} for all j≠i. By theorem 3.4 K >  D′j  

K ⊆ {x1, . . . , xn} \ {xi}. If K is a tight set with respect to all different (x1, . . . , xn), then  di ∈ 

DK. Otherwise, |K| > |DK|. Then either some domain is empty, or K contains a tight set K0, 

and  Dj ∩ DK0   = ∅ for some xj  ∈ K \ K0. 

The all different constraint can be made hyper- arc consistent by generating all tight sets K 

and updating Di = Di \ DK for all xi ∈/ K.  This approach is similar to the algorithms for 

achieving bounds consistency and range consistency. For  bounds consistency and range 

consistency we could generate the respective Hall intervals and Hall sets rather easily 

because we were dealing with intervals containing  the  domains. In order to generate tight 

sets similarly we should consider all possible subsets K ⊆ {x1, . . . , xn}. As the number of 

subsets is exponential in n, this  approach  is not practical. A different, more constructive, 

approach makes use of matching theory to update the domains, and was introduced by Regin 

[5]. 

Theorem4.3. Let G be a graph and M a maximum-size matching in G. An edge belongs to a 

maximum-size matching in G if and only if it either belongs to M, or to an even M alternating 

path starting at an M free vertex, or to an M alternating circuit.

Proof. Let M be a maximum-size matching in G=(V, E). Suppose edge e belongs to a 

maximum-size matching N, and e∉M. The graph G0=(V, M∪N )  consists of even paths 

(possibly of length 0) and circuits with edges alternatingly in M and N. If the paths are not of 

even length, M or N can be made larger by interchanging edges in M and N along this path (a 

contradiction because they are of maximum size). 

Conversely, let M  be a maximum-size  matching in G. By interchanging edges in M and not 

in M along even M alternating paths starting at an M free vertex and M alternating circuits 

we obtain matching of maximum size again.      ¤ 

consider a tight set K ⊂ {x1, . . . , xn} of minimum size. The edges between vertices in K and 

in DK form M -alternating circuits in the value graph.  we remove those edges xid with  xi K  

and  d ∈ DK , i.e. Di ∩ DK = ∅. This corresponds to applying Theorem 3.20. 

  

Figure .2. The bipartite graph 

5. Variants of the All different Constraint 

This section presents two variants of the all different constraint: the symmetric all different 

constraint and the weighted all different constraint. 
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5.1 The Symmetric All different Constraint 

Regin [5] developed the symmetric all different constraint, a specific instance of the 

all different constraint. Assumed to represent the same set of elements are the variables and 

their respective domain values.  If the variable representing element i is assigned to the value 

representing element j, then the variable representing element j must be assigned to the value 

representing element i, according to the symmetric all different constraint, which mandates 

that all variables take different values. Below is a more formal definition that is provided. 

It is very appropriate to use the symm all different restriction on round-robin 

tournament problems.  In situations like this, like a sporting event, every team needs to be 

paired with another team.  The problems are frequently very hard to solve since there are 

typically many more constraints involved than just the symm all different constraint. For real-

world problem examples, the propagation of the all different constraint and the symm all 

different constraint have been examined. They demonstrate that constraint programming 

performs several orders of magnitude better than operations research techniques when 

employing the symm all different constraint. 

Definition5.2  (Symmetric all different constraint). Let x1, x2, . . . , xn be variables  with  

respective finite domains D1, D2, . . . , Dn  ⊆  {1, 2, . . . , n}. Then symm all different (x1, . . ., 

xn) = {(d1, . . . , dn) | di  ∈ Di, di  = dj  for i = j, di  = j ⇔ dj  = i for i = j} . 

The symm all different constraint in a CSP can also be written as an all different constraint 

plus one or more symmetry-preserving constraints. There is also an alternative form that 

makes advantage of the so-called cycle constraint, which states that every cycle has to have 

two vertices. Then, x is assigned to y and vice versa, as indicated by a cycle on two vertices, 

x and y.  Nonetheless, compared to the common all different constraint with extra 

restrictions, the symm all different constraint captures more global information. Therefore, a 

stronger propagation method can be obtained by applying the symm all different constraint.  

Example .1  Consider a set of three people that have to be grouped in pairs.  Each person can 

only be paired to one other person.  This problem can be represented as a CSP by introducing 

a set of people S = {p1, p2, p3} that are pairwise compatible. These people are represented 

both by a set of variables x1, x2 and x3  and by a set of values v1, v2  and v3, where xi and vi 

represent pi. Then the CSP 

x1  ∈ {v2, v3}, x2  ∈ {v1, v3}, x3  ∈ {v1, v2}, 

x1  = v2  ⇔ x2  = v1, 

x1  = v3  ⇔ x3  = v1, 

x2  = v3  ⇔ x3  = v2, 

all different (x1, x2, x3) 

is hyper-arc  consistent. However, the following CSP 

x1 ∈ {v2, v3}, x2  ∈ {v1, v3}, x3  ∈ {v1, v2}, 

symm all different (x1, x2, x3) 
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is inconsistent. Indeed, there exists no solution to this problem, as the number of variables is 

odd.                                                                                                                                          

Suppose there exists a value j ∈ Di, while i ≠ Dj. Then we can immediately remove value j 

from Di. Hence we assume that such situations do not occur in the following. 

Similar to the common all different constraint, the symm all different constraint can be 

expressed by a graph.  Given a constraint symm all different (x1, . . . , xn), construct the graph  

G symm = (X, E), with vertex  set X = {x1, x2, . . . , xn} and  edge set  E  = {xixj  | xi  ∈  Dj, xj   

∈  Di, i < j}. Note that we identify each variable xi with value i for i = 1, . . . , n. We denote 

the numbers of edges in Gsymm by m, i.e. ( ) 2/1 i

n

i
Dm == . An illustration of Gsymm is given 

in the next example. 

Example .2 Consider the following CSP 

xa ∈ {b, c, d, e},       xb ∈ {a, c, d, e},   xc  ∈ {a, b, d, e},  

xd ∈ {a, b, c, e},  xe ∈ {a, b, c, d, i, j},   xf  ∈ {g, h},        

xg ∈ {f, h},         xh ∈ {f, g, i, j},   xi  ∈ {e, h, j},          xj ∈ {e, h, i}, 

symm all different (xa, xb, . . . , xj). 

Theorem 5.3. Let x1, x2, . . . , xn  be a sequence  of variables  with respective finite domains  

D1, D2, . . . , Dn. Then 

(d1, . . . , dn) ∈ symm all different (x1, . . . , xn) 

if and only if M = {xidi | i < di} is a matching  in G. 

Proof. An edge xixj   in Gsymm  corresponds  to the  assignments xi = di  and xdi  = i, which are 

equivalent with  xj = dj and  xdj = j, because di = j and dj = i. As no edges in a matching share 

a vertex, all endpoints are different. Finally, as M covers X, to all variables a value is 

assigned.                                     ¤ 

We use Theorem 3.24 to make the symm all different constraint hyper- arc consistent. 

Example. 3.. Consider for example the sub graph induced by vertices f, g and h. obviously 

vertices f and g have to be paired in order to satisfy the symmetric all different constraint. 

Hence, vertex h cannot be paired to f nor g, and the corresponding edges can be removed.  

The  same  holds  for the  sub graph  induced  by a,  b, c, d and  e, where the vertices  a, b, c 

and d must  form pairs.                                                    

we already know how to identify edges that belong to a maximum-size matching. Namely, 

given an arbitrary maximum-size matching M, they  belong either  to M, or to an even M -

alternating path  starting at  a free vertex,  or to  an  even  M -alternating circuit.  However,  

in the  cur- rent case, Gsymm  does not  need to be bipartite, so we cannot  blindly  apply the  

machinery   symmetric all different constraint. 

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 61



 

 

 

 

Figure 3. Propagation of the symmetric  all different constraint of Example 3 

 

The following algorithm to achieve hyper-arc consistency was proposed by Regin  [5]. First, 

we compute a maximum size matching M in the (possibly non-bipartite) graph Gsymm. If |M | 

< n/2, there is no solution.  Otherwise, we need to detect all edges that can never belong to a 

maximum-size matching. Since there are no M free vertices,  we only need to check whether  

an edge that does not  belong to M  is part  of an even M - alternating circuit.  This can be 

done as follows. If for an edge uv ∈ M we find an M -alternating path u, . . . , w, v (with  u ≠ 

w), we know that the  edge wv is on an  even M -alternating circuit.  Moreover,  we can 

compute  all possible M -alternating paths  from u to v, that avoid edge uv. All edges wv that 

are not  on such a path  cannot  belong to an even M -alternating circuit.  Namely, all M -

alternating circuits  through wv should also contain  the matching edge uv. Hence, by. This 

procedure  should be repeated for all vertices  in Gsymm. 

Hence the  total  time  complexity  of the  algorithm achieving hyper-arc  consistency  

for the symm all different constraint is O(nm). 

Note that the  above  algorithm is not  incremental, and  may  not  be  effective in all 

practical cases. For this reason, also an incremental algorithm was proposed by Regin [5], 

that does not ensure hyper-arc consistency, however. The algorithm computes once a 

maximum-size matching, and each incremental step has a time complexity of O(m).  

6. Conclusion 

We have provided an overview of the key findings from the years pertaining to all the 

various constraints. In order to achieve this, we have first presented the fundamental 

combinatorial ideas—matchings, flows, and Hall's Theorem—that underpin the findings.  

These ideas have allowed us to explain the many ideas of local consistency in a methodical 

manner, along with the propagation algorithms that go along with them, all of which have 

been used to address various constraints. 

The following observation is crucial. Constraint programming requires efficient and effective 

propagation techniques in order to be applied to real-world issues. It is true that the most 

effective propagation method for all constraints—that is, the one that yields hyper-arc 

consistency—is highly effective.  We can use operations research's matching theory, which 

explains why.  Effective and efficient propagation methods are also available for the 

symmetric all different constraint and the weighted all different constraint, both of which are 

based on operations research methodologies. 

These findings demonstrate the potential advantages of using operations research 

methods in constraint propagation algorithms. 
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