
A SYSTEMATIC OVERVIEW OF THE ALL DIFFERENT CONSTRAINT

M. DEVIKA1 & Prof G. SHOBHA LATHA2

1RESEARCH SCHOLAR, DEPARTMENT OF MATHEMATICS, SRI KRISHNA

DEVARAYA UNIVERSITY, ANANTAPURAMU, A. P. INDIA.
2PROFESSOR, DEPARTMENT OF MATHEMATICS, SRI KRISHNA DEVARAYA

UNIVERSITY, ANANTAPURAMU, A.P. INDIA.

Abstract: The most significant advancements over time with relation to every type of limitation.

We begin by outlining the fundamental ideas from combinatorial theory. Next, we present a

summary and a comparative analysis of various propagation methods that achieve hyper-arc

consistency, limits, range, and arc consistency, respectively. Furthermore, the symmetric all

different constraint and the least weight all different constraint are two variations of the all

different constraint that are examined.

Key words: symmetric, constraint, and combinatorial.

1. Introduction
The well-known "all different" constraint, which mandates that every variable in the

constraint be pairwise different, is one of the constraints found in almost all constraint

programming systems.

The significance of these "disequality constraints" was understood back in the early days

of constraint programming. Lauriere [1], for instance, presented ALICE, "A language and a

program for stating and solving combinatorial problems," in the 1970s. In this system, if a set of

variables is given the keyword "DIS," it indicates that the variables must have distinct values. It

specifies a global structure that is used to the advantage of the solution-finding process.

It was also possible to define the constraint of difference as the well-known all different

constraint after the advent of constraints in logic programming, for instance in the system CHIP

[Dincbas, Van Hentenryck, Simonis, Aggoun, Graf, and Berthier[2]. Wallace, Novello, and

Schimpf[3] established this requirement as all distinct in the system Eclipse. Nonetheless, all of

the various constraints were internally handled as a series of disequalities in the early constraint

(logic) programming systems; for instance, see Van Hentenryck [4]. Sadly, in doing so, the

global information is lost. The propagation algorithm proposed by Regin [5], which takes into

account all disequalities at once, was used to get the global view.

The many constraints have been important throughout the development of constraint

programming. This unique constraint is used in a number of articles and books to demonstrate

the advantages of constraint programming, either by demonstrating the modeling power of the

technique or by demonstrating how much faster issues can be solved when employing it. From a

modeling perspective, the need for disjoint circuits to span a directed graph or issues based on

permutations easily give rise to the all different constraint. There are many applications where

each distinct restriction is crucial, such as Gomes and Shmoys' quasi-group completion problems

[6], Barnier and Brisset's air traffic management [7, 8], Gronkvist's [9], and Tsang, Ford, Mills,

Bradwell, Williams, and Scott's rostering difficulties [8]. Last but not least, numerous additional

worldwide.

 The various constraints have been thoroughly examined in constraint programming over

the years. As we'll show, there are at least six distinct propagation methods for the all-different

constraint, each of which achieves local consistency in a unique way or more quickly. Numerous

algorithms in this list are based on operations research methodologies, such as matching theory

and flow theory. With relation to the purview of this thesis, such propagation algorithms are

particularly interesting.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 53

The same underlying ideas are frequently used by the propagation algorithms. This

chapter provides a comprehensive overview of all the constraints, which is likely to be

considered the most well-known, influential, and extensively researched constraint in the subject

of constraint programming, in an effort to make them more comprehensible, accessible, and

cohesive.

We showcase findings from combinatorial theory concerning the various constraints.

These results are crucial to many of the propagation methods under consideration. We provide

formal definitions for various concepts of local consistency that are utilized in relation to the

various constraints.

The treatment comprises an explanation of the specific concept of local consistency

about the all-different constraint, in addition to an algorithmic description that accomplishes that

local consistency.

Initially, a symmetric variant of every restriction is examined. Next, a linear objective

function is introduced and used in conjunction with the all different constraint to exploit the

weighted all different constraint.

takes into account the all different polytope, which is a specific description of the all

different constraint's solution set. Constraints on combinational backgrounds. Models involving

integer linear programming can make use of this explanation.

2 .Combinatorial Background

2.1 All different and Bipartite Matching
The equivalence of a solution to the all different constraint and a matching in a bipartite

graph.

Definition 2.1.1 (All different constraint). Let x1, x2, .…. xn be variables with respective finite

domains D1,D2,…..Dn. Then all different (x1,…..xn) = {(d1,….dn) d1 ε Dt, d1 ≠ dj for i≠j}.

Definition 2.1..2 (Value graph). Let X = x1, x2,….xn be a sequence of variables with respective

finite domains D1,D2,…….Dn. The bipartite graph G = (X∪ DX,E) with E = {xid dεDi} is

called the value graph of X.

Theorem 2.2Let X = x1, x2,…..,xn be a sequence of variables with respective finite domains

D1,D2,……,Dn. Let G be the value graph of X. Then (d1,……,dn) ∈ all different (x1,…..,xn) if

and only if M = {x1d1,…..,xndn} is a matching in G.

Proof An edge xidi (for some i ∈{1,…..,n}) in M corresponds to the assignment xi = di. As no

edges in M share a vertex, xi ≠ xj for all i≠ j.

Example .1 We want to assign four tasks (1, 2, 3 and 4) to five machines (A, B, C, D and E). To

each machine at most one task can be assigned. However, not every task can be assigned to

every machine. Table 3.1 below presents the possible combinations. For example, task 2 can be

assigned to machines B and C.

Task Machines

1 B, C, D, E

2 B, C

3 A, B, C, D

4 B,C

Table 1. Possible task machine combinations

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 54

Figure .1. The value graph for the task assignment problem of Example 2.3. Bold edges form a

matching covering all tasks.

This problem is modelled as follows. We introduce a variable xi for task i = 1,……,4

whose value represents the machine to which task i is assigned.

The initial domains of the variables are defined by the possible combinations in Table .1. Since

the tasks have to be assigned to different machines, we introduce an all different constraint. The

problem is thus modelled as the CSP

x1 ∈ {B, C, D, E}, x2 ∈ {B, C}, x3 ∈ {A, B, C, D}, x4 ∈ {B, C},

all different (x1, x2, x3, x4):

The value graph of X = x1,….,xn is presented in Figure 3.1. The bold edges in the value graph

denote a matching covering X. It corresponds to a solution to the CSP, i.e. x1 = D, x2 = B,

x3 = A and x4 = C.

2.3 Hall's Marriage Theorem

A useful theorem to derive constraint propagation algorithms for the all-different

constraint is Hall's Marriage Theorem1, Hall,[14].

If a group of men and women marry only if they have been introduced to each other

previously, then a complete set of marriages is possible if and only if every subset of men has

collectively been introduced to at least as many women, and vice versa2.

The following formulation is stated in terms of the all different constraint.

Theorem 2.4. Let x1, x2,……., xn be variables with respective definite domains D1, D2, ……,

Dn. The constraint all different (x1,…….,xn) has a solution if and only if

K< Dk (1)

for all K ⊂ {x1,…..,xn}.

Proof. The direct proof presented here is adapted from Schrijver [15], and originally due to

Easterfield [16]. Call a set K tight if equality holds in (3.1). Necessity of the condition being

obvious, we prove sufficiency. We use induction, with the hypothesis that Theorem 3.4 holds for

k variables with k < n.

If there is a d ∈ Dn such that

 x1 ∈ D1 \ {d}, . . . , xn−1 ∈ Dn−1 \ {d}, (2)

all different(x1, . . . , xn−1)

has a solution, then we are done. Hence, we may assume the opposite, i.e. in (3.2), for each d

∈ Dn, there exists a subset K ⊆ {1, . . . , n-1} with |K| > |DK \{d}|. Then, by induction, all

different(x1, . . . , xn−1), with x1 ∈ D1, . . . , xn−1 ∈ Dn−1, has a solution if and only if for each

d ∈ Dn there is a tight subset K ⊆ {1, . . . , n-1} with d ∈ DK. Choose any such tight subset K.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 55

Without loss of generality, K = {1, . . . , k}. By induction, all different (x1, . . . , xk) has a

solution, using all values in DK . Moreover,

xk+1 ∈ Dk+1 \ DK , . . . , xn ∈ Dn \ DK ,

all different (xk+1, . . . , xn)

has a solution. This follows inductively, since for each L ⊆ {k + 1, . . . , n},

() LDLKDKULDDUDDU
kkki

KULi
ki

Li

=−+=−≥−=
εε

/

where the “≥” relation is obtained by applying condition (3.1). Then all different (x1, . . . , xn)

has a solution, using all values in DK ∪ DL. ¤

The following example shows an application of Theorem 3.4.

Example .2. Consider the following CSP

x1 ∈ {2, 3}, x2 ∈ {2, 3}, x3 ∈ {1, 2, 3}, x4 ∈ {1, 2, 3},

all different (x1, x2, x3, x4).

For any K ⊆ {x1, x2, x3, x4} with |K| ≤ 3, we have |K| ≤ |DK |.

For K = {x1, x2, x3, x4} however, |K| > |DK |, and by Theorem 3.4 this CSP has no

solution. ¤

Theorem 3. The constraint all different (x1, . . . , xn) is bounds consistent if and only if |Di| ≥ 1 (i

= 1, . . . , n) and

i) for each interval I: |KI | ≤ |I|,

ii) for each Hall interval I: {min Di, max Di} ∩ I = ∅ for all xi ∈/ KI .

Proof. Let I be a Hall interval and xi ∈/ KI . If all different (x1, . . . , xn) is bounds consistent, it

has a solution when xi = min Di, by Definition 3.7. From Theorem 3.4 immediately follows that

min Di ∈/ I. Similarly for max Di.

Conversely, suppose all different (x1, . . . , xn) is not bounds consistent. Thus, there exist

a variable xi and a value di ∈ {min Di, max Di} for some i ∈ {1, . . . , n}, such that all

different (x1, . . . , xi−1, xi+1, . . . , xn) has no solution, where xj ∈ D’j

= [min(Dj \ {di}), max(Dj \ {di})] for all j = i.

By Theorem 3.4, there exists some K ⊆ {x1,….,xn}\{xi} such that |K| > |D’k |

Choose I=D′k and consider KI with respect to all different (x1, . . . , xn).

Then either I is a Hall interval and di ∈ KI, or |K| > |KI |.

Example .1 Consider the following CSP

x1 ∈ {1, 2}, x2 ∈ {1, 2}, x3 ∈ {2, 3},

all different (x1, x2, x3).

Observe that the variables x1 and x2 both have domain {1, 2}, Hence, values 1 and 2 cannot

be assigned to any other variable and therefore, value 2 should be removed from D3.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 56

The algorithm detects this when the interval I is set to I = [1, 2]. Then the number of

variables for which Di ⊆ I is 2. Since |I| = 2, I is a Hall interval. The domain of x3 is not in

this interval, and {min D3, max D3}∩I = {min D3}. In order to obtain the empty set in the

right hand side of the last equation, we need to remove min Di. The resulting CSP is bounds

consistent.

Construct an algorithm that achieves bounds consistency on the all different constraint.

Consider all intervals I = [l, u] where l ranges over all minimum domain values and u over all

maximum do main values. There are maximally n2 such intervals, as there are n variables.

Count the number of variables that are contained in I. If a Hall interval is detected, update the

bounds of the appropriate variables. This can be done in O(n) steps. Hence the time

complexity of this algorithm is O(n3).

However, it is more efficient to first sort the variables. To update the minimum

domain values, we sort the variables in increasing order of their maximum domain value.

Then we maintain an interval by the minimum and maximum bounds of the variables, which

are inserted in the above order. Whenever we detect a maximum-length Hall interval, we

update the bounds of the appropriate variables, reset the interval and continue with the next

variable. To update the maximum domain values, we can apply the same method after

interchanging [min Di, max Di] with [− max Di, − min Di] for all i.

The sorting of the variables can be done in O(n log n) time. As shown by Puget [17],

we can use a balanced binary tree to keep track of the number of variables within an

interval, which allows updates in O(log n) per variable. Hence the total time complexity

reduces to O(n log n).

An improvement on top of this was suggested and implemented by Lopez- Ortiz,

Quimper, Tromp, and van Beek [18]. They noticed that while keeping track of the number of

variables within an interval, some of the used counters are irrelevant. They give two

implementations, one with a linear running time plus the time needed to sort the variables,

and one with an O(n log n) running time. Their experiments show that the latter algorithm is

faster in practice.

A different algorithm for achieving bounds consistency of the all different constraint

was presented by Mehlhorn and Thiel [19]. Instead of Hall intervals, they exploit the

correspondence with finding a matching in a bipartite graph, similar to the algorithm

presented in Section 3.4.4. Their algorithm runs in O(n) time plus the time needed to sort the

variables according to the bounds of the domains.

Although the worst-case time complexity of the above algorithms is always O(n log

n), under certain conditions the sorting can be performed in linear time, which makes

the algorithms by Lopez-Ortiz et al. [20] and Mehlhorn and Thiel [21] run in linear time.

This is the case in many practical instances, for example when the variables encode a

permutation.

3.1 Range Consistency
Introduced an algorithm that achieves range consistency for the all different constraint. To

explain this algorithm we follow the same procedure as in the previous subsection. Again

we use Hall’s Marriage Theorem to construct the algorithm.

Definition 3.2 (Hall set). Let x1, x2, . . . , xn be variables with respective finite domains

D1, D2, . . . , Dn. Given K ⊆ {x1, . . . , xn}, define the interval IK = [min DK , max DK]. K is a

Hall set if |K| = |IK |.

Note that in the above definition IK does not necessarily need to be a Hall interval,

because KIK = {xi | Di ⊆ IK } ⊇ K

Theorem 3.3. The constraint all different (x1, . . . , xn) is range consistent if and only if

|Di| ≥ 1 (i = 1, . . . , n) and Di ∩ IK = ∅ for each Hall set K ⊆ {x1, . . . xn} and each xi ∉ K.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 57

Proof. Let K be a Hall set and xi ∈/ K. If all different (x1, . . . , xn) is range consistent, it has

a solution when xi = d for all d ∈ Di,

Conversely, suppose all different (x1, . . . , xn) is not range consistent.

Thus, there exist a variable xi and a value di ∈ Di for some i ∈ {1, . . . , n}, such that all

different (x1, . . . , xi−1, xi+1, . . . , xn) has no solution, where xj ∈ D′j = [min Dj \ {di}, max

Dj \ {di}] for all j ≠ i. , there is some K. Note that D′K = IK .

Consider IK with respect to all different (x1, . . . , xn). If K is a Hall set, then di ∈ IK .

Otherwise, |K| > |IK |. Then either some domain is empty, or K contains a Hall set K′, and

Dj ∩ IK′ ≠ ∅ for some xj ∈ K \ K′.

We can deduce a first propagation algorithm in a similar way as we did for bounds

consistency. Namely, consider all intervals I = [l, u] where I ranges over all minimum

domain values and u over all maximum domain values. Then we count again the number of

variables that are contained in I. If a Hall set is detected, we update the domains of the

appropriate variables. This is one in O(n) steps. Hence the time complexity of this algorithm

is O(n3), as there are again maximally n2 intervals to consider.

A faster algorithm is presented by Leconte . We first sort (and store) the variables

twice, according to their minimum and maximum domain value, respectively. The main loop

considers the variables ordered by their maximum domain value. For each such variable, we

maintain the interval IK and start adding variables to K. For this we consider all variables

(inner loop), now sorted by their minimum domain value. When we detect a Hall set,

updating the domains can be done in O(1) time, either within or after the inner loop, and

we proceed with the next variable. As sorting the variables can be done in O(n log n) time,

the total time complexity of this algorithm is O(n2). This time complexity is optimal, as is

illustrated in the following example, taken from Leconte .

Example.3 Consider the following CSP

xi ∈ {2i + 1} for i = 0, 1, . . . , n,

xi ∈ {0, 1, . . . , 2n + 2} for i = n + 1, n + 2, . . . , 2n,

all different (x0, x1, . . . , x2n).

In order to make this CSP range consistent, we have to remove the n + 1 first odd

integers from the domains of the n variables whose domain is not yet a singleton. This takes

O(n2) time. ¤

Observe that this algorithm has an opposite viewpoint from the algorithm for bounds

consistency, although it looks similar. Where the algorithm for bounds consistency takes

the domains (or intervals) as a starting point, the algorithm for range consistency takes the

variables instead. But they both attempt to reach a situation in which the cardinality of a set

of variables is equal to the cardinality of the union of the corresponding domains.

4. Hyper-arc Consistency

A hyper-arc consistency propagation algorithm for the all different constraint was

proposed by Regin[5]. The algorithm is based on matching theory. We first give a

characterization in terms of Hall’s Marriage Theorem.

Definition 4.1 (Tight set). Let x1, x2, . . . , xn be variables with respective finite domains D1,

D2, . . . , Dn. K ⊆ {x1, . . . , xn} is a tight set if |K| = |DK |.

Theorem .4.2 The constraint all different (x1, . . . , xn) is hyper-arc consistent if and only if

|Di| ≥ 1 (i = 1, . . . , n) and Di ∩ DK = ∅ for each tight

set K ⊆ {x1, . . . xn} and each xi ∈/ K.

Proof. Let K be a tight set and xi ∉ K. If all different (x1, . . . , xn) is hyper- arc consistent, it

has a solution when xi = d for all d ∈ Di, by Definition 3.6.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 58

immediately follows that Di ∩ DK = ∅.

Conversely, suppose all different (x1, . . . , xn) is not hyper-arc consistent.

Thus, there exist a variable xi and a value di ∈ Di for some i ∈ {1, . . . , n}, such that all

different (x1,….,xi−1, xi+1,……,xn) has no solution, where

Xj ∈ D′j = Dj \ {di} for all j≠i. By theorem 3.4 K > D′j

K ⊆ {x1, . . . , xn} \ {xi}. If K is a tight set with respect to all different (x1, . . . , xn), then di ∈

DK. Otherwise, |K| > |DK|. Then either some domain is empty, or K contains a tight set K0,

and Dj ∩ DK0 = ∅ for some xj ∈ K \ K0.

The all different constraint can be made hyper- arc consistent by generating all tight sets K

and updating Di = Di \ DK for all xi ∈/ K. This approach is similar to the algorithms for

achieving bounds consistency and range consistency. For bounds consistency and range

consistency we could generate the respective Hall intervals and Hall sets rather easily

because we were dealing with intervals containing the domains. In order to generate tight

sets similarly we should consider all possible subsets K ⊆ {x1, . . . , xn}. As the number of

subsets is exponential in n, this approach is not practical. A different, more constructive,

approach makes use of matching theory to update the domains, and was introduced by Regin

[5].

Theorem4.3. Let G be a graph and M a maximum-size matching in G. An edge belongs to a

maximum-size matching in G if and only if it either belongs to M, or to an even M alternating

path starting at an M free vertex, or to an M alternating circuit.

Proof. Let M be a maximum-size matching in G=(V, E). Suppose edge e belongs to a

maximum-size matching N, and e∉M. The graph G0=(V, M∪N) consists of even paths

(possibly of length 0) and circuits with edges alternatingly in M and N. If the paths are not of

even length, M or N can be made larger by interchanging edges in M and N along this path (a

contradiction because they are of maximum size).

Conversely, let M be a maximum-size matching in G. By interchanging edges in M and not

in M along even M alternating paths starting at an M free vertex and M alternating circuits

we obtain matching of maximum size again. ¤

consider a tight set K ⊂ {x1, . . . , xn} of minimum size. The edges between vertices in K and

in DK form M -alternating circuits in the value graph. we remove those edges xid with xi K

and d ∈ DK , i.e. Di ∩ DK = ∅. This corresponds to applying Theorem 3.20.

Figure .2. The bipartite graph

5. Variants of the All different Constraint

This section presents two variants of the all different constraint: the symmetric all different

constraint and the weighted all different constraint.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 59

5.1 The Symmetric All different Constraint

Regin [5] developed the symmetric all different constraint, a specific instance of the

all different constraint. Assumed to represent the same set of elements are the variables and

their respective domain values. If the variable representing element i is assigned to the value

representing element j, then the variable representing element j must be assigned to the value

representing element i, according to the symmetric all different constraint, which mandates

that all variables take different values. Below is a more formal definition that is provided.

It is very appropriate to use the symm all different restriction on round-robin

tournament problems. In situations like this, like a sporting event, every team needs to be

paired with another team. The problems are frequently very hard to solve since there are

typically many more constraints involved than just the symm all different constraint. For real-

world problem examples, the propagation of the all different constraint and the symm all

different constraint have been examined. They demonstrate that constraint programming

performs several orders of magnitude better than operations research techniques when

employing the symm all different constraint.

Definition5.2 (Symmetric all different constraint). Let x1, x2, . . . , xn be variables with

respective finite domains D1, D2, . . . , Dn ⊆ {1, 2, . . . , n}. Then symm all different (x1, . . .,

xn) = {(d1, . . . , dn) | di ∈ Di, di = dj for i = j, di = j ⇔ dj = i for i = j} .

The symm all different constraint in a CSP can also be written as an all different constraint

plus one or more symmetry-preserving constraints. There is also an alternative form that

makes advantage of the so-called cycle constraint, which states that every cycle has to have

two vertices. Then, x is assigned to y and vice versa, as indicated by a cycle on two vertices,

x and y. Nonetheless, compared to the common all different constraint with extra

restrictions, the symm all different constraint captures more global information. Therefore, a

stronger propagation method can be obtained by applying the symm all different constraint.

Example .1 Consider a set of three people that have to be grouped in pairs. Each person can

only be paired to one other person. This problem can be represented as a CSP by introducing

a set of people S = {p1, p2, p3} that are pairwise compatible. These people are represented

both by a set of variables x1, x2 and x3 and by a set of values v1, v2 and v3, where xi and vi

represent pi. Then the CSP

x1 ∈ {v2, v3}, x2 ∈ {v1, v3}, x3 ∈ {v1, v2},

x1 = v2 ⇔ x2 = v1,

x1 = v3 ⇔ x3 = v1,

x2 = v3 ⇔ x3 = v2,

all different (x1, x2, x3)

is hyper-arc consistent. However, the following CSP

x1 ∈ {v2, v3}, x2 ∈ {v1, v3}, x3 ∈ {v1, v2},

symm all different (x1, x2, x3)

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 60

is inconsistent. Indeed, there exists no solution to this problem, as the number of variables is

odd.

Suppose there exists a value j ∈ Di, while i ≠ Dj. Then we can immediately remove value j

from Di. Hence we assume that such situations do not occur in the following.

Similar to the common all different constraint, the symm all different constraint can be

expressed by a graph. Given a constraint symm all different (x1, . . . , xn), construct the graph

G symm = (X, E), with vertex set X = {x1, x2, . . . , xn} and edge set E = {xixj | xi ∈ Dj, xj

∈ Di, i < j}. Note that we identify each variable xi with value i for i = 1, . . . , n. We denote

the numbers of edges in Gsymm by m, i.e. () 2/1 i

n

i
Dm == . An illustration of Gsymm is given

in the next example.

Example .2 Consider the following CSP

xa ∈ {b, c, d, e}, xb ∈ {a, c, d, e}, xc ∈ {a, b, d, e},

xd ∈ {a, b, c, e}, xe ∈ {a, b, c, d, i, j}, xf ∈ {g, h},

xg ∈ {f, h}, xh ∈ {f, g, i, j}, xi ∈ {e, h, j}, xj ∈ {e, h, i},

symm all different (xa, xb, . . . , xj).

Theorem 5.3. Let x1, x2, . . . , xn be a sequence of variables with respective finite domains

D1, D2, . . . , Dn. Then

(d1, . . . , dn) ∈ symm all different (x1, . . . , xn)

if and only if M = {xidi | i < di} is a matching in G.

Proof. An edge xixj in Gsymm corresponds to the assignments xi = di and xdi = i, which are

equivalent with xj = dj and xdj = j, because di = j and dj = i. As no edges in a matching share

a vertex, all endpoints are different. Finally, as M covers X, to all variables a value is

assigned. ¤

We use Theorem 3.24 to make the symm all different constraint hyper- arc consistent.

Example. 3.. Consider for example the sub graph induced by vertices f, g and h. obviously

vertices f and g have to be paired in order to satisfy the symmetric all different constraint.

Hence, vertex h cannot be paired to f nor g, and the corresponding edges can be removed.

The same holds for the sub graph induced by a, b, c, d and e, where the vertices a, b, c

and d must form pairs.

we already know how to identify edges that belong to a maximum-size matching. Namely,

given an arbitrary maximum-size matching M, they belong either to M, or to an even M -

alternating path starting at a free vertex, or to an even M -alternating circuit. However,

in the cur- rent case, Gsymm does not need to be bipartite, so we cannot blindly apply the

machinery symmetric all different constraint.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 61

Figure 3. Propagation of the symmetric all different constraint of Example 3

The following algorithm to achieve hyper-arc consistency was proposed by Regin [5]. First,

we compute a maximum size matching M in the (possibly non-bipartite) graph Gsymm. If |M |

< n/2, there is no solution. Otherwise, we need to detect all edges that can never belong to a

maximum-size matching. Since there are no M free vertices, we only need to check whether

an edge that does not belong to M is part of an even M - alternating circuit. This can be

done as follows. If for an edge uv ∈ M we find an M -alternating path u, . . . , w, v (with u ≠

w), we know that the edge wv is on an even M -alternating circuit. Moreover, we can

compute all possible M -alternating paths from u to v, that avoid edge uv. All edges wv that

are not on such a path cannot belong to an even M -alternating circuit. Namely, all M -

alternating circuits through wv should also contain the matching edge uv. Hence, by. This

procedure should be repeated for all vertices in Gsymm.

Hence the total time complexity of the algorithm achieving hyper-arc consistency

for the symm all different constraint is O(nm).

Note that the above algorithm is not incremental, and may not be effective in all

practical cases. For this reason, also an incremental algorithm was proposed by Regin [5],

that does not ensure hyper-arc consistency, however. The algorithm computes once a

maximum-size matching, and each incremental step has a time complexity of O(m).

6. Conclusion

We have provided an overview of the key findings from the years pertaining to all the

various constraints. In order to achieve this, we have first presented the fundamental

combinatorial ideas—matchings, flows, and Hall's Theorem—that underpin the findings.

These ideas have allowed us to explain the many ideas of local consistency in a methodical

manner, along with the propagation algorithms that go along with them, all of which have

been used to address various constraints.

The following observation is crucial. Constraint programming requires efficient and effective

propagation techniques in order to be applied to real-world issues. It is true that the most

effective propagation method for all constraints—that is, the one that yields hyper-arc

consistency—is highly effective. We can use operations research's matching theory, which

explains why. Effective and efficient propagation methods are also available for the

symmetric all different constraint and the weighted all different constraint, both of which are

based on operations research methodologies.

These findings demonstrate the potential advantages of using operations research

methods in constraint propagation algorithms.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 62

7.References

[1] J.-L. Lauriere. A language and a program for stating and solving combinatorial problems.

Artificial Intelligence. An International Journal, 10(1): 29{127, 1978. Cited on page 27.

[2] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The

Constraint Logic Programming Language CHIP. In ICOT,editor, Proceedings of the

International Conference on Fifth Generation Computer Systems (FGCS'88), pages 693{702.

Springer, 1988. Cited on page 27.

[3] M. Wallace, S. Novello, and J. Schimpf. ECLiPSe: A platform for constraint logic

programming. Technical report, IC-Parc, Imperial College, London,1997. Cited on page 27.

[4] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. The

Constraint Logic Programming Language CHIP. In ICOT, editor, Proceedings of the

International Conference on Fifth Generation Computer Systems (FGCS'88), pages 693{702.

Springer, 1988. Cited on page 27.

[5] J.-C. Regin. A Filtering Algorithm for Constraints of Difference in CSPs.In Proceedings

of the Twelfth National Conference on Artificial Intelligence(AAAI), volume 1, pages

362{367. AAAI Press, 1994. Cited on page 27,

39, 40, 42, 61.

[6] C.P. Gomes and D. Shmoys. Completing Quasigroups or Latin Squares: A Structured

Graph Coloring Problem. In Proceedings of the Computational Symposium on Graph

Coloring and its Generalizations, 2002. Cited on page

28, 97.

[7] N. Barnier and P. Brisset. Graph Coloring for Air Tra±c Flow Management. In

Proceedings of the Fourth International Workshop on Integration of AI and OR Techniques

in Constraint Programming for Combinatorial Optimization Problems (CP-AI-OR 2002),

pages 133{147, 2002. Cited on page 28.

[8] M. Gronkvist. A Constraint Programming Model for Tail Assignment. In J.-C. Regin and

M. Rueher, editors, Proceedings of the First International Conference on the Integration of AI

and OR Techniques in Constraint Programming for Combinatorial Optimization Problems

(CPAIOR 2004), volume 3011 of LNCS, pages 142{156. Springer, 2004. Cited on page 28.

[9] E. Tsang, J. Ford, P. Mills, R. Bradwell, R. Williams, and P. Scott. ZDCRostering: A

Personnel Scheduling System Based On Constraint Programming. Technical Report 406,

University of Essex, Colchester, UK, 2004.Cited on page 28.

[10] W.J. Older, G.M. Swinkels, and M.H. van Emden. Getting to the Real Problem:

Experience with BNR Prolog in OR. In Proceedings of the Third International Conference on

the Practical Applications of Prolog (PAP'95).

Alinmead Software Ltd, 1995. Cited on page 28.

[11] J. Zhou. A permutation-based approach for solving the job-shop problem. Constraints,

2(2):185{213, 1997. Cited on page 28.

[12] N. Beldiceanu and E. Contejean. Introducing Global Constraints in CHIP.Mathematical

and Computer Modelling, 20(12):97{123, 1994. Cited on page 28.

[13] J.-C. Regin. Generalized Arc Consistency for Global Cardinality Constraint.In

Proceedings of the Thirteenth National Conference on Arti¯ cial Intelligenceand Eighth

Innovative Applications of Arti¯ cial Intelligence Conference

(AAAI / IAAI), volume 1, pages 209{215. AAAI Press / The MITPress, 1996. Cited on page

28, 65, 68.

[14] P. Hall. On representatives of subsets. Journal of the London Mathematical Society,

10:26{30, 1935. Cited on page 30.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 63

[15] A. Schrijver. Combinatorial Optimization - Polyhedra and Efficiency. Springer,2003.

Cited on page 7, 8, 9, 10, 30, 31, 40, 110.

[16] T.E. Easterfield. A combinatorial algorithm. Journal of the London Mathematical

Society, 21:219{226, 1946. Cited on page 31.

[17] J.-F. Puget. A fast algorithm for the bound consistency of alldiff constraints.In

Proceedings of the Fifteenth National Conference on Artifcial Intelligence and Tenth

Innovative Applications of Artifcial Intelligence Conference(AAAI / IAAI), pages 359{366.

AAAI Press / The MIT Press, 1998.Cited on page 36, 37, 42.

[18] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple algorithm

for bounds consistency of the alldi®erent constraint. In Proceedings of the 18th International

Joint Conference on Artificial Intelligence (IJCAI-03), pages 245{250. Morgan Kaufmann,

2003. Cited on page 37,38, 42, 43.

[19] K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of the sortedness and

the alldifferent constraint. In R. Dechter, editor, Proceedings of the Sixth International

Conference on Principles and Practice of

Constraint Programming (CP 2000), volume 1894 of LNCS, pages 306-319.Springer, 2000.

Cited on page 37, 38, 42.

[20] A. Lopez-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek. A fast and simple algorithm

for bounds consistency of the alldifferent constraint. In Proceedings of the 18th International

Joint Conference on Artificial Intelligence

(IJCAI-03), pages 245{250. Morgan Kaufmann, 2003. Cited on page 37,38, 42, 43.

[21] K. Mehlhorn and S. Thiel. Faster algorithms for bound-consistency of thesortedness and

the alldiferent constraint. In R. Dechter, editor, Proceedings of the Sixth International

Conference on Principles and Practice of

Constraint Programming (CP 2000), volume 1894 of LNCS, pages 306-319.Springer, 2000.

Cited on page 37, 38, 42.

Journal Of Technology || Issn No:1012-3407 || Vol 14 Issue 7

Page No: 64

